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Isotope effect on hydrogen bond symmetrization in hydrogen and 
deuterium fluoride crystals by molecular dynamics simulation 
Hichem Dammak,†a Fabien Brieuc,a Grégory Geneste,b Marc Torrent b and Marc Hayoun c 

The isotope effect on the collective proton/deuteron transfer in hydrogen and deuterium fluoride crystals has been 
investigated at 100 K by ab initio quantum-thermal-bath path-integral molecular dynamics (QTB-PIMD) simulation. The 
deuterons within a planar zigzag chain of the orthorhombic structure simultaneously flip between covalent and hydrogen 
bonds due to the barrier crossing through tunnelling. The height of the corresponding static barrier normalized for one 
deuteron is 29.2 meV. In the HF crystal, all the protons are located at the center of the heavy-atom distance. This evidences 
the symmetrization of the H-bonds, and indicates that the proton zero-point energy is above the barrier top. The decrease 
of the heavy-atom distance due to quantum fluctuations in both HF and DF crystals corresponds to a large decrease and an 
increase of the hydrogen and covalent bond lengths, respectively. Upon deuteration, the increase of the heavy-atom 
distance (Ubbelohde effect) is in agreement with experimental data.

1 Introduction 
Proton hopping through a hydrogen bond network has been 
evidenced in various hydrogen-bonded systems1 such as liquid 
water2,3 and ordinary ice (hexagonal Ih)4 for example, but not in 
the hydrogen fluoride (HF) crystal. In fact, the orthorhombic 
structure of HF consisting of planar zigzag chains of HF 
molecules offers the possibility of collective multiple proton 
hopping through the formation and concomitant cleavage of 
covalent bonds involving neighbouring molecules. 
The small mass of the proton means that it is inherently 
quantum mechanical in nature, and nuclear quantum effects 
(NQE) such as zero-point motion, quantum delocalization, and 
quantum tunnelling are relevant. The potential seen by the 
protons of the HF zigzag chain is a symmetric double well energy 
surface and the zero-point energy can be below or above the 
barrier top, thus defining two limit cases. i) The occupied proton 
energy levels are above the barrier top and the maximum of the 
position probability density is at the barrier top. This 
corresponds to a symmetrized hydrogen bond and there is then 
no proton hopping. ii) The occupied proton energy levels are far 
below the barrier top and the proton transfer mostly 
corresponds to (non-adiabatic) tunnelling. Proton tunnelling 
represents the motion of protons through the potential energy 
barrier that separates the final from the initial state when the 
thermally activated process of hopping over the barrier top is 

classically not possible. Proton tunnelling gets strongly 
enhanced upon decreasing the height and/or the width of the 
energy barrier. It typically requires short hydrogen bonds since 
the strength of hydrogen bonds is a key feature influencing the 
proton tunnelling.5 Among the hydrogen halides, HF is precisely 
the one having the strongest hydrogen bonds due to the largest 
electronegativity of fluorine and hence provides a rich 
playground for the study of the impact of NQE on proton 
position disorder. 
We report herein a simulation study in which we investigate the 
impact of NQE on the HF and DF crystals by using the quantum 
thermal bath path-integral molecular dynamics (QTB-PIMD) 
simulation technique that efficiently takes into account the 
NQE. The interactions were modelled from first principles 
within the framework of density functional theory (DFT). The 
simulated system and the QTB-PIMD method are described in 
section 2. The results on the proton disorder, including the 
static energy profile, the position probability density, and the 
partial radial distribution functions are given in section 3. 
Sections 4 and 5 are dedicated to the discussion and the 
conclusion, respectively. 

2 System under study and methods 
2.1 Simulated System 

The structure of our simulated crystal is composed of two zigzag 
HF chains as shown in Fig. 1. Each H atom is bonded by a 
covalent bond to its first neighbour and by a hydrogen bond to 
its second neighbour. The protons within a chain could 
simultaneously flip between the covalent and the hydrogen 
bonds. 
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Fig. 1   Simulated HF crystal (8 molecules) in the Bm21b structure. F and H atoms are black 
and white circles, respectively. Covalent and hydrogen bonds are also displayed. The 
orthorhombic primitive cell is indicated by the black rectangle whose lattice 
parameters  and  are shown. The  axis is pointing into the page. The first chain is in 

the plane at  while the second one is located in the plane at . 

It is useful to consider the approximate one-dimensional 
double-well model, in which all the protons in one of the two 
chains are constrained at intermediate positions between their 
two neighbouring F atoms. The corresponding reaction 
coordinate was chosen as the difference between the distance 
of the protons from their neighbouring F atoms: 

�  (1) 

When � , the protons of one chain are exactly in the center 
of the F–F distance. 
2.2 Quantum Thermal Bath Path-Integral Molecular Dynamics 
Simulation 

NQE cannot be neglected in HF and DF and can be accounted 
for by using the path-integral (PI) formalism.6,7 In this 
formulation of quantum statistical mechanics, the canonical 
partition function  is written as a discretized imaginary time 
path integral. For a quantum system containing  
(distinguishable) particles of mass ,  can be expressed 
according to: 

 (2) 

The integral is over  (Trotter number) replicas of the system, 
labelled by the integer s, each replica being a set of N positions 
of the atoms . These replicas come 
from the discretization of the PI in imaginary time. The effective 
potential  which depends on all atomic positions of all 
replicas is composed of two terms, the physical potential 
energy, , computed in each replica and averaged over them, 
and a harmonic coupling term, of angular frequency 

, between replicas: 

  (3) 

This effective potential has the particularity to depend on the 
atomic masses and on the temperature. Each particle  of the 

replica  is thus interacting through harmonic forces with the 
particles  of the replicas  and , forming a 
polymer ring that closes on itself by periodic boundary 
conditions, . In the limit where the Trotter number 

, this equivalent classical system has the same partition 
function as that of the quantum system. As a consequence, MD 
simulation can be applied to the classical equivalent to 
numerically estimate the static properties of the quantum 
system. For a PIMD simulation in the microcanonical ensemble, 
the corresponding equation of motion of each particle  in each 
replica  writes 

 
  (4) 

In practical PIMD simulations, the Trotter number is finite, and 
must be chosen to converge the estimated quantities. For 
instance, the average total energy of the system is given by the 
following estimator: 

  (5) 

where the first and second averages are the kinetic and the 
potential energies, respectively. This primitive estimator can be 
derived from . Exact results can be obtained by 
PIMD simulations but often at the price of a high computational 
cost. 
The quantum thermal bath (QTB) MD8 is an approximate 
alternative method including the quantum fluctuations, and is 
based on a modification of the Langevin thermostat.9 The 
cartesian component  of the random force, , applied on the 
atom , is not a white noise and its power spectral density, , is 
derived from the quantum dissipation-fluctuation theorem,10 
and is related to the Fourier transform of the autocorrelation 
function, , according to the Wiener−Khinchin 
theorem: 

 (6) 

  (7) 

where  is the frictional coefficient.  is the average 
energy of the harmonic oscillator: 

  (8) 

where  is the angular frequency of the oscillator,  is the 
reduced Planck constant and  the statistical temperature 
( ). The equation of motion is thus: 

  (9) 

In contrast to the Langevin thermostat,  is -dependent and 
the random force components are generated using the 
procedure detailed in Ref. 11 and 12). The QTB method provides 
exact results in the case of purely harmonic systems. For 
anharmonic systems and as for all methods based on classical 

b

c +1/2
+1/2

+1/2
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trajectories,13 QTB-MD can fail due to zero-point energy leakage 
(ZPEL), which is the consequence of the coupling between 
vibrational modes. In this case, the resulting energy distribution 
does not match Eq. (8), it is intermediate between the quantum 
distribution and the classical homogeneous distribution. 
Weakly anharmonic systems can be successfully simulated by 
QTB-MD by increasing the value of , whereas for strongly 
anharmonic systems the ZPEL cannot be suppressed and QTB-
MD should not be used. 
It is thus suitable to combine the QTB and PIMD,14 in a way 
similar to that developed by Ceriotti et al.15 in order to improve 
the convergence of the PIMD and/or to correct potential 
failures of the QTB-MD technique especially in the case of 
strongly anharmonic systems. This combination requires the 
modification of the power spectral density of the random forces 
applied on each atom of each replica. Indeed, for not converged 
Trotter number, quantum fluctuations are already partially 
included within the ring polymer of the PIMD. The QTB random 
forces will thus only bring the missing part of the NQE which is 
dependent on the Trotter number. In practice,  in Eq. (7) 
is replaced by the adequate function , which is solution 
of the following equation 

 (10) 

where  is the angular frequency of the normal modes of the 
ring polymer in the harmonic approximation: 

  (11) 

For the normal modes at , the power spectral density is 
thus given by: 

  (12) 

whereas the normal mode at  (centroid of the ring 
polymer) is classically considered . Since the 
corresponding random forces are intended to be applied to the 
normal modes, the random forces applied on the atoms are 
obtained through an orthogonal transformation which can be 
found in Ref. 14. 
2.3 Computational details 

The proton/deuteron transfers require the quantum 
mechanical description of the electronic structure that allows 
for the breaking and the formation of the chemical and 
hydrogen bonds. This description is achieved by using density-
functional theory (DFT) calculations within the GGA-PBE 
functional.16 We employed the ABINIT code17 and our 
simulations are performed in the framework of the projector 
augmented-wave (PAW) method.18-20 We used, in all the MD 
simulations, an 8-molecules supercell consisting of  
orthorhombic cells of 4 HF (DF) molecules, containing two zig-
zag chains along the y direction. The Brillouin zone of this 
supercell is sampled with a  Monkhorst-pack k-point 
mesh, and the plane-wave cut-off is set to 30 hartrees; in the 
augmentation regions it is set to 60 hartrees for the density. The 
lattice constants of the supercell are maintained fixed in all the 
MD runs, based on the values found by structural optimization 

of the primitive cell, i.e.  Å,  Å and 
 Å. 

The QTB-PIMD technique, we implemented in the parallel 
version of the ABINIT code,17,19 was used to simulate the proton 
(deuteron) transfers in HF (DF) with a Trotter number , 
for which the calculations were converged. This simulation 
provides a description based on the atomic-position probability 
density at equilibrium and cannot give any information about 
the kinetics of the process. The simulations were carried out, 
with the static lattice constants, at  K in the canonical 
(NVT) ensemble through the QTB thermostat. The nuclear 
masses were taken at 1 amu for H, 2 amu for D and 19 amu for 
F. The time step and the effective frictional coefficient were set 
at  fs and  THz. The systems were 
equilibrated for about 2-3 ps, and once equilibrated, averages 
were computed along runs of about 25 ps and 74 ps as long for 
HF and DF, respectively. 

3 Results 
3.1 Static calculation 

The first step of the investigation was the static calculation of 
the collective proton transfer. It consists in the determination 
at  K of the free energy along the reaction coordinate 
given by Eq. (1). The protons within one chain simultaneously 
flip between the covalent and the hydrogen bonds. 
We computed the static energy profile, that is experienced by 
the protons of one chain, by using the Nudged Elastic Band 
method21 implemented in the ABINIT code. The result thus 
obtained is shown by the open circles in Fig. 2. This symmetric 
double-well energy profile can be expressed through the 
relation: 
 

 
Fig. 2   Double-well energy profile normalized for one proton as a function of the reaction 
coordinate, � (Eq. (1)). Open circles: static free energy computed by the Nudged Elastic 
Band method implemented in ABINIT; solid line: result of the fitting on the open circles 
of the parameters  and �  of �  in Eq. (2). The evolution of the distance between 
the first and second neighbours of the proton, , is also displayed as a function 
of �. 
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� � �   (13) 

The values of the two parameters  and �  have been fitted on 
the calculated energy profile. The height of the barrier is 

 meV and the distance between the two wells is 
�  Å. Fig. 2 also displays the atomic configurations 

associated to the two energy minima, � � �  and to the 
saddle point, � . Moreover, during the transfer, the distance 
between the first and second neighbours of the proton, 

, varies and reaches a minimum value at � . The 
amplitude of variation of this distance is 0.077 Å. Such a 
correlation between the two coordinates, � and , is 
clearly evidenced by the two-dimensional energy surface shown 
in Fig. 3. 
3.2 Probability density for collective proton transfer 

The probability densities, ��, computed by QTB-PIMD for the 
proton/deuteron in HF/DF along the reaction coordinate, ��, are 
given in Fig. 4. The probability density for DF (blue distribution) 
displays two maxima. This indicates that the deuterons flip 
between two stable positions due to the barrier crossing 
through the tunnel effect. This effect is important as shown by 
the value of �  Å-1 at � . Without this effect, i.e. in 
the classical regime, the system would remain in one of the two 
potential energy minima as obtained by standard MD (grey 
peak). Another significant impact of quantum effects is the 
negative shift of the stable position by about  Å. In the case 
of HF (red distribution), the only most probable position is 
around � , meaning that the protons are located at mid-
distance between their two first fluoride neighbours. Hence, the 
image of protons linked to the two fluoride ions by a covalent 
bond and a H-bond probably no longer holds. In fact, protons 
are linked to the two fluoride ions by two equivalent bonds. It is 
a case of symmetrization of the hydrogen bond22 occurring 
when the proton zero-point energy is above the barrier top.23 
The comparison of the probability densities of HF and DF clearly 
evidences an important isotope effect. Note that the PIMD 
probability density for HF, , requires 128 replicas (red dashed-
line) to approach the converged QTB-PIMD result, . The 
discrepancy between the two curves can be evaluated by 
calculating the divergence factor, : 
 

 
Fig. 3   Energy surface normalized for one proton as a function of the reaction coordinate 
� and , as obtained by a static calculation without any relaxation of the atomic 
positions on the Bm21b structure. The energy path of Fig. 2 is displayed by the red dashed 
line. 

 
Fig. 4   Probability density, �, at  K for the proton in HF (red lines) or deuteron 
in DF (blue lines) as a function of the reaction coordinate � (Eq. (1)). Solid lines: QTB-
PIMD, ; red dashed-line: PIMD, ; blue dashed-line: QTB-MD, 
�� �  a.u. The light-grey line is the probability density as obtained by standard 
MD without NQE. 

�
�

  (14) 

which is similar to the reliability factor used in the Rietveld 
method.24 Its value is . In addition, QTB-MD with a 
very high value of the friction coefficient provides an 
approximate distribution for DF (blue dashed-line) which is 
qualitatively similar to the QTB-PIMD probability density but the 
tunnelling effect is underestimated. The divergence factor with 
respect to the QTB-PIMD result is . 
The simulated probability density along the reaction 
coordinate, �, using the centroid positions at  K can be 
used to determine the effective free energy profiles25 for 
proton/deuteron. These profiles are displayed in Fig. 5 as a 
function of the reaction coordinate, �. The effective barrier 
height is lowered through tunnelling for DF (blue line). Its 
decrease is about 40% with respect to the static barrier height 
(  meV). For HF (red line) the proton behaves as if there was 
no barrier, indicating that the proton zero-point energy is above 
the barrier top. 
3.3 Radial distribution functions 

 
Fig. 5   Energy profiles normalized for one proton/deuteron as a function of the reaction 
coordinate, � (Eq. 1). Simulated free energy profiles at  K in HF (red line) and DF 
(blue line) deduced from the probability densities, �� , using the centroid positions (QTB-

PIMD, ) through the expression � � , where ��  is the 
maximum value of the probability density. Black line: static double-well energy, � , of 
Fig. 2. 
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Fig. 6 displays the radial distribution functions, , obtained 
from QTB-PIMD trajectories at  K. The H–F and D–F 

 show peaks in the 0.8–1.6 Å range. For DF (blue curve of 
Fig. 6a), the first peak at 1.04 Å and the second peak at 1.33 Å 
correspond to the covalent and hydrogen bonds, respectively. 
In comparison to the classical case (grey curve of Fig. 6a), the 
covalent bond length is slightly enlarged while that of the H-
bond is greatly shrinked. Indeed, quantum fluctuations probe 
the anharmonic region of the potential energy and are more 
relevant for shallow energy profiles. The hydrogen bond is 
weaker than the covalent one and therefore more sensitive to 
quantum effects. This quantum effect is more pronounced in 
the crystal with the lighter isotope (red curve of Fig. 6a) and 
leads to a single peak at 1.1 Å, which corresponds to a 
symmetrization of the hydrogen bond. Note also that the 
increase of the hydrogen bond length with deuteration is known 
as the Ubbelohde effect.26 
The  of Fig. 6b indicates that the F–F distance between the 
first and second neighbours of H (2.346 Å) and D (2.371 Å) is 
shortened in both crystals due to quantum fluctuations. The 
overall decrease of the F–H–F length corresponds to a large 
decrease of the H-bond length and an increase of the length of 
the covalent bond. The discrepancy with respect to the MD 
result (grey curve) is about -0.054 Å and -0.033 Å for HF and DF, 
respectively. In the case of HF, our value is larger than the one 
(-0.035 Å) found by Li et al.5 showing that their PIMD calculation 
was not fully converged, since they used a too small number of 
replicas ( ). Moreover, our PIMD calculations showed 
that  is not sufficient to have the H-bond 
symmetrization, and provides a probability density with two 
maxima. On the other hand, these authors point out the correct 
effect, i.e. that in strong H-bonded systems, as HF, NQE result in 
shorter H-bonds. 
The effect of deuteration on the F–F distance has been 
estimated from neutron powder diffraction on DF at  K 
by Johnson et al.27 (2.51±0.02 Å) and from X-ray diffraction on 
HF at  K by Atoji et al.28 (2.49±0.01 Å). It results in an 
elongation of the F–F distance of about 0.02 Å which is 
satisfactorily reproduced by our QTB-PIMD simulations, 0.025 Å, 
at  K. 
In contrast, the  for H–H and D–D of Fig. 6c display a rather 
small impact of quantum effects on the first peak, resulting in a 
slight shift (-0.03 Å) and widening with respect to the classical 
case. 
3.4 Crystal structure 

The centroid position distributions of the protons/deuterons in 
the bc plane at  K in HF/DF are displayed in Fig. 7. Here, 
all the protons/deuterons positions are explicitly shown. In HF, 
the symmetrization clearly occurs for all the hydrogen bonds 
leading to the Bmmb space group symmetry. In contrast, all the 
deuterons in DF occupy two favoured positions, in between 
their two neighbours, to which they are bonded either by a 
covalent bond or a H-bond. Moreover, one can note that the 
zigzag chain structure is antiparallel with respect to the 
orientations of the covalent bonds. This corresponds to the 
Pmnb space group symmetry. It is important to mention that 

the detailed analysis of the simulation trajectory shows that 
only 65% of the configurations are in the antiparallel structure. 
Moreover, within the statistical accuracy of the computation, 
the antiparallel and parallel structures could have the same 
probability. We note, that although our conclusion on the 
antiparallel chain structure could be correct, it is the opposite 
of the parallel-chain model considered to represent the 
structure in the neutron powder diffraction study on DF at 

 K by Johnson et al.27 

 
Fig. 6   Partial radial distribution functions, , computed at  K in HF (red lines) 
and DF (blue lines) by QTB-PIMD ( ) compared to standard MD (light grey). (a) H-
F (D-F), (b) F-F, (c) H-H (D-D). The same scale is used for the abscissa axes. 

4 Discussion 
Among the possible space groups, Atoji et al.28 proposed the 
Bmmb structure for HF at  K without any 
experimental evidence for the location of the protons, since 
they used the X-ray diffraction method. In this space group, the 
authors suggested that the protons occupy either of two equally 
probable positions on both sides of the centre of F–H–F. 
However, according to this symmetry the protons can occupy 
the centre of F–H–F, corresponding to the symmetrization of 
the hydrogen bond we observed (Fig. 7). The important 
broadening of the infrared absorption bands of HF compared to 
those of other hydrogen halide crystals (HI, HBr and HCl) 
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evidenced the presence of very strong hydrogen bonds.29 This 
experimental observation could be the consequence of 
quantum fluctuations of the proton feeling a strongly 
anharmonic potential energy similar to the red energy profile of 
Fig. 5. Nevertheless, the experimental evidence of the 
symmetrization of the H-bond in HF by Raman spectroscopy30 
was found at pressures higher than 6 GPa, whereas our 
computation was carried out at a lower pressure. Indeed, the 
pressure along b, which is the relevant axis for the zigzag chain 
structure is about  GPa. It is worth noting that the zigzag 
structure of the chains allows the free variation of the bond 
lengths, since the F-H-F-H-F angles (in the bc plane) can 
accommodate the constraint induced by the fixed size of the 
box along b. The pressure shift from the experimental value can 
be interpreted by a proton transfer barrier height too low due 
to the use of the PBE functional. Indeed, standard GGA 
functionals are usually thought as underestimating proton 
transfer barriers, at least for molecules in the gas phase31 and to 
a lesser extent for single proton transfers in some bulk 
materials.23,32 This underestimation is attributed to a self-
interaction error.33 In water, the PBE functional can also reverse 
the sign of the isotope fractionation between liquid and vapour 
through an important softening of the covalent bond.34 
However, recent works35-37 moderate this trend since in some 
2D or 3D hydrogen bond networks, proton transfer barriers as 
described by PBE are in good agreement with barriers obtained 
by more sophisticated functionals such as PBE0 or HSE. In the 
present 1D hydrogen bond network, a slight underestimation of 
the proton transfer barrier height may thus be expected, in 
relation with a slightly too strong hydrogen bond, which is 
reflected in the underestimation of the b lattice constant by ~ 
5% within PBE. In addition, Zhang et al.38 found the 
symmetrization of the H-bond at 25 GPa within a static 
calculation by DFT at  K. They claim an excellent 
agreement with experiment30 despite the absence of any NQE. 
This agreement probably results from the fact that the error of 
PBE on the transfer barrier would be cancelled by the absence 
of NQE in the calculation. 
In the case of DF, no symmetrization of the H-bond is found 
neither in our computation (pressure along b of  GPa) nor 
by experimental Raman spectroscopy at pressures up to 
12 GPa.30 

5 Conclusions 
NQE in the HF and DF crystals have been investigated by QTB-
PIMD simulation at  K. An important isotope effect on 
the proton position disorder has been observed. 
We have evidenced a collective deuteron transfer in the zigzag 
chains of molecules located in the (a,b) plane of the 
orthorhombic structure. The deuterons within a chain 
simultaneously flip between covalent and hydrogen bonds. 
Correlatively, the distances between their two first fluoride 
neighbours vary and reach a minimum value at the saddle point. 
The height of the associated static barrier normalized for one 
deuteron is  meV between the two wells corresponding to 
a deuteron hopping length of about 0.36 Å. The simulated 

probability density for DF indicates that the deuterons cross the 
barrier through tunnelling. The effective barrier height is then 
19 meV and the associated hopping length is 0.29 Å. In addition, 
with a probability of 65% the zigzag chain structure in DF was 
found to be antiparallel with respect to the orientations of the 
covalent bonds. 
 

 
Fig. 7   Centroid position distributions of all protons/deuterons in the crystallographic bc 
plane at  K in HF (upper part) and DF (lower part), as obtained from equilibrium 
QTB-PIMD trajectories. The mean positions of the F atoms are shown by the green 
spheres. 

In the case of HF, the protons are located in the centre of the F–
F distance resulting in a symmetrization of all the hydrogen 
bonds. This indicates that the proton zero-point energy is above 
the barrier top. As expected, the NQE are more pronounced in 
the HF crystal, owing to the smaller mass of hydrogen. 
Finally, the overall decrease of the shortest heavy-atom 
distance in both crystals consists especially in a large decrease 
of the H-bond length. In addition, the deuteration results in the 
(conventional) Ubbelohde effect which corresponds to an 
increase of the hydrogen bond length and an elongation of the 
F–F distance. 
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