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Abstract

An experimental set-up, based on the electrical excitation of a piezoelectric sam-

ple, is proposed for resonant ultrasound spectroscopy measurements. The detection

of the mechanical vibrations is performed by means of a laser interferometer. In par-
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allel, the free vibrations of piezoelectric parallelepipeds of tetragonal and hexagonal

symmetries are modeled, taking into account the effect of the sample metalization.

Finally, the paper presents the full elastic, piezoelectric and dielectric tensors of two

PMN-34.5%PT ceramic and PZN-12%PT single crystal cubes.

1 Introduction

Relaxor-based ferroelectric single crystals such as PMN-x%PT and PZN-x%PT can have

excellent piezoelectric properties compared to conventional PZT ceramics. Their large

electromechanical coefficient k33 (about 93%), their high dielectric permittivity εT
33 (about

5000ε0) and their typical piezoelectric constant d33 of 2500pC/N make these materials very

attractive for ultrasonic transducer applications requiring a high sensitivity and large

bandwidths [1, 2] or for sensors and actuators.

Nowadays, to design complex devices, manufacturers need to have the complete sets of

properties of the constitutive materials. As a consequence, the existing characterization

methods have to be adapted to the small dimensions of single crystals, their anisotropy

degree and the difficulty to obtain homogeneous compositions [3, 4, 5]. Complete ten-

sor properties has already been reported for PMN-x%PT and PZN-x%PT single crys-

tals. However, both electrical and acoustic measurements were performed involving the

preparation of at least five samples [6, 7] leading to possible differences in the sample

characteristics. Another method, based on the transmission of acoustic waves through

immersed plates, has been successfully applied to the characterization of large samples

[8, 9]. However, this method cannot be easily adapted to single crystals due to the re-

2



quired dimensions of the tested samples.

The method reported in this paper is based on the Resonant Ultrasound Spectroscopy

(RUS) allowing to identify the complete set of elastic, piezoelectric and dielectric prop-

erties of materials with only one single small sample. This method was first successfully

applied to elastic materials [10, 11, 12] and then extended piezoelectric samples [13, 14].

But in these later cases, mechanical excitations and detections were performed, involving

transducers or pinducers limiting the frequency bandwidth. Moreover, the free boundary

conditions were not necessarily satisfied and all the excited modes were not electrically

coupled. Furthermore these methods were only developed for materials with trigonal sym-

metry.

In this paper, a new experimental set-up is proposed for resonant ultrasound spec-

troscopy measurements. It is based on an electrical excitation of the piezoelectric sample

and on the detection of its mechanical vibrations by means of a laser interferometer. In

parallel, the free vibrations of piezoelectric parallelepipeds of tetragonal and hexagonal

symmetries have been modeled. The effect of the sample metalization is discussed and

results are compared to finite element computations. To validate the experimental set-up

and the inverse problem resolution, a 10× 10× 10 mm3 cube of PMN-34.5%PT ceramic

(hexagonal symmetry 6mm) with known properties is first characterized. Then, the paper

reports for the first time the entire set of properties of a [001]c PZN-12%PT single crystal

in the tetragonal phase (4mm).
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2 Modeling of the resonant vibration modes of piezo-

electric parallelepipeds

2.1 Free vibrations of a piezoelectric parallelepiped

Consider a non metalized parallelepiped with characteristic dimensions L1 = A
2
, L2 =

B
2
, L3 = C

2
as shown in Figure 1. The axis are positioned so that they cut the orthogonal

face in its center. The Lagrangian of a piezoelectric body is [15, 16, 13]:

L =
1

2

∫∫∫
v

ui,jC
E
ijkluk,l + 2φ,memkluk,ldV

−1

2

∫∫∫
v

φ,mεS
mnφ,n + ρω2uiuidV, (1)

where a eiωt time dependence is assumed for mechanical and electrical quantities. In a

variational approach, any mechanical displacement, ui → ui +δui, and electrical potential

variation, φ → φ + δφ, yield a variation of the Lagrangian: L → L + δL. Hamilton’s

principle leads to look for the Lagrangian stationary points where δL = 0. This determines

a motion equation whose solutions correspond to the free vibrations of the piezoelectric

body. In the Rayleigh-Ritz method [16], the mechanical displacements and the electrical

potential are expressed as a linear combination of functions:

u =
N∑

p=1

apψp ; φ =
M∑

r=1

brϕr. (2)

The ψp, p = 1, . . . , N, and ϕr, r = 1, . . . , M, functions are chosen to be orthonormal.

To solve the variational problem ap and br constants have to be determined. Substituting
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expressions (2) into equation (1), the Lagrangian becomes:

L =
1

2

[∑
p

∑

p′
apap′

(
Γpp′ − ρω2δpp′

)
]

(3)

+
1

2

[
2
∑

p

∑
r

apbrΩpr −
∑

r

∑

r′
brbr′Λrr′

]
,

where,

Γpp′ =

∫∫∫

v

ψpi,jC
E
ijklψp′k,ldV,

Ωpr =

∫∫∫

v

ϕr,memklψpk,ldV,

Λrr′ =

∫∫∫

v

ϕr,mεS
mnϕr′,ndV, (4)

with

ψpi,j =
1

2

(
∂ψpi

∂xj

+
∂ψpj

∂xi

)
and ϕr,m =

∂ϕr

∂xm

. (5)

ψpi is the ψp component in the xi direction. Γ, Ω et Λ are respectively called elas-

tic, piezoelectric and dielectric interaction matrices [15]. Coefficients ap and br are then

determined by the condition of the stationary Lagrangian:

∂L

∂ap

= 0, p=1,2,3,. . . ,N ;
∂L

∂br

= 0, r=1,2,3,. . . ,M. (6)

From equations (4) and (6), the eigenvalue problem is expressed as:

(
Γ + ΩΛ−1Ωt

)
a = ρω2a, (7)

b = Λ−1Ωta, (8)

where a = (a1, a2, . . . , aN)t and b = (b1, b2, . . . , bM)t are unknown vectors. A description

of the matrices Γ, Λ et Ω is given in the appendix of [13]. The determination of the
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eigenvalues ρω2 and the eigenvectors a and b allows then to identify the resonant frequency

ω, the modal elastic displacements u and the electric potential φ, respectively.

As pointed in literature [17], a Legendre polynomial basis is very well adapted to

describe the behavior of the electrical and acoustical fields inside parallelepipeds. As a

consequence, the solutions of the eigenproblem (7) and (8) are sought in the form [13, 18]:

ψp =
1√

L1L2L3

P λ

(
x1

L1

)
P µ

(
x2

L2

)
P ν

(
x3

L3

)
ei, (9)

ϕr =
1√

L1L2L3

P ξ

(
x1

L1

)
P ς

(
x2

L2

)
P η

(
x3

L3

)
, (10)

where the pth and rth basic functions ψp and ϕr are defined by the triplets (λ, µ, ν)

and (ξ, ς, η), respectively. Pα(x) is the Legendre function of order α and ei is the unit

displacement vector in the direction xi. 1√
L1L2L3

is a normalization term.

2.2 Symmetry considerations

Mochizuki showed that the symmetry classification of the free oscillations of anisotropic

parallelepipeds was useful for material characterization [19]. It allows to discretize the

matrices of the eigenvalue problem (7) and then to simplify its resolution. This principle

is here extended to piezoelectric materials of parallelepiped shapes. The samples charac-

terized in the present study belong, at least, to the mmm symmetric class, direct product

of the 222 class and the inversion 1:

mmm = 222⊗ 1. (11)

The free modes of vibration of a parallelepiped can then be classified according to the

eight following elements [19], expressed here in their irreducible representation (Mulliken
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notation [20]):

Ag, B1g, B2g, B3g, Au, B1u, B2u, B3u. (12)

The elastic displacements and the electric potential - equations (2), (9) and (10) - are

then:

u =
∑

λµνi

aλµνi√
L1L2L3

P λ

(
x1

L1

)
P µ

(
x2

L2

)
P ν

(
x3

L3

)
ei, (13)

φ =
∑

ξςη

bξςη√
L1L2L3

P ξ

(
x1

L1

)
P ς

(
x2

L2

)
P η

(
x3

L3

)
. (14)

The relations between the coefficients aλµνi and bξςη and the symmetry groups are pre-

sented in Table 1 which also classifies the eigenmodes with respect to their irreducible

representations and the Legendre polynomials’ parity [19, 17]. Table 1 is valid for piezo-

electric materials possessing at least the orthorhombic symmetry.

Using this decomposition, the interaction matrices Γ, Ω and λ are separated into eight

independent matrices, leading to eight independent eigenvalue problems:




(
Γh + ΩhΛh

−1Ωh
t
)
a = ρω2a ,

with,

h = Ag, B1g, B2g, B3g, Au, B1u, B2u, B3u.

(15)

This size reduction of the eigenvalue problems to be solved yields reduced computation

times. Table 2 presents the classification of the resonance frequencies and corresponding

mode-shapes of a 10× 10× 10 mm3 PMN-34.5%PT cube (see §3.1). Due to the fact that

the studied samples are cubic (L1 = L2), two modes are degenerated (B2g, B3g and B2u,

B3u) and their mode-shapes are similar with respect to a 90˚rotation around the x3 axis.
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2.3 Modeling of piezoelectric cube eigenmodes in the presence of

electrodes

To perform the electric polarization of piezoelectric materials, electrodes have to be laid

down on two surfaces, generally orthogonal to the polarization axis. Expression (1) does

not take into account any potential imposed by an electrode on the piezoelectric solid

surface. To do so, the work performed by the electrical charges of the metalized surfaces

has to be subtracted from the Lagrangian (1). Neglecting the mass of the electrodes and

considering two metalized surfaces A1,2, the Lagrangian becomes:

L =
1

2

∫∫∫

v

ui,jC
E
ijkluk,l + 2φ,memkluk,ldτ

− 1

2

∫∫∫

v

φ,mεS
mnφ,n + ρω2uiuidτ (16)

−
2∑

m=1

∫∫

Am

φni

(
eikluk,l − εS

ijφ,i

)
dAm,

where the surface integral represents the energy generated by the electrostatic forces σE.

In our case - on a metalized surface supposed to be located at x3 = −L3 - a constant

electrical potential is assumed to be zero:

φ(x, y, z) = 0 ∀(x, y, z) ∈ (x, y,−L3). (17)

The "surface" term of equation (17) vanishes but the above condition influences the

choice of the functions describing the electrical potential in equation (2). Trigonometric

or polynomial functions can still be used but they must have a high order to allow a

numerical convergence. To avoid long computation times, Legendre functions are here

weighted by a simple polynomial in order to satisfy the equation (17). The potential

functions ϕr (r = 1, . . . , M) then become:
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ϕr =
1√

L1L2L3

P ξ

(
x1

L1

)
P ς

(
x2

L2

)
fη

(
x3

L3

)
, (18)

where

fη (x3) =

[
(−1)η

2
(1 + x3)Pη (x3)

]
. (19)

The mechanical displacement formulation is not modified. However, the orthogonality

relation - not necessarily required - is no longer verified. The definitions of the matrices

Γ, Λ et Ω - given in the appendix of [13] - can still be used but the constitutive blocks are

modified. A description of the resulting modifications is given in the appendix A. These

matrices allow to solve the eigenvalue problem (7).

3 Theoretical results and discussion

3.1 Application to PMN-34.5%PT and comparison with a finite

element modeling

The variational model is here applied to the computation of the resonant frequencies

and mode-shapes of a PMN-34.5%PT Manganese doped ceramic cube. Its dimensions are

chosen to be 10×10×10 mm3, to be consistent with the experiments presented in §4. The

characteristics of the ceramic are taken from the literature [21] where the symmetry class

is supposed to be hexagonal (6mm): density ρ = 8060 kg·m−3; elastic stiffness coefficients

(at constant E) CE
11 = CE

22 = 168.8 GPa, CE
12 = 116.83 GPa, CE

13 = CE
23 = 116.80 GPa,

CE
33 = 154.43 GPa, CE

44 = CE
55 = 30.56 GPa, CE

66 = 25.97 GPa ; the piezoelectric constants
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e15 = e24 = 16.66 pC·m−2, e31 = e32 = −6.92 pC·m−2, e33 = 30.15 pC·m−2 ; the dielectric

constants (at constant strain) εS
11 = εS

22 = 2367ε0, εS
33 = 2622ε0.

A convergence criterion is employed to fix the order n of the Legendre functions used

in the decomposition (9) and (10): the difference between the results obtained with the

order n and those of the order n+1 must be less than 0.1%. In the following computations,

n is set to 10. The first six resonances correspond to the six static modes (three rotations

and three translations). As a consequence, their resonant frequencies are null. The 24

following resonant frequencies, given by the eignevalues of the matrix Γ + ΩΛ−1Ωt, are

presented in Table 3. Some of the values presented in Table 3 are redundant. They

correspond to the same kind of mode with respect to a 90˚ rotation around the x3 axis.

This is a consequence of the material symmetry as well as the chosen geometry (L1 = L2).

Table 3 also reports the resonance frequencies calculated using Atila FEM code. In this

case, a cubic mesh with 20 nodes has been chosen and 6 elements have been used to

model each side. It lead to 1225 points. It can be seen that the resonances computed by

the FE code are generally higher than the ones of the variational method. However, the

maximum relative error is of 1.23% allowing to consider that the two sets of results are

consistent.

The determination of the ap components, identified by the matrix eigenvectors, allows

to compute the three displacements u1, u2 and u3 and then reconstruct the vibration

mode-shapes corresponding to the resonant frequencies. The electrical potential can be

also reconstructed from the br components from the relation (8). Figure 2 presents the

elastic displacement ((a) and (b)) and the electric potential ((c) and (d)) computed at

the upper surface (x3 = L3) by the variational method ((a) and (c)) and the FE code ((b)
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and (d)). The resonant frequencies are respectively 114431 Hz and 114450 Hz. The two

sets of results are in good agreement.

3.2 Effect of metalization

In the experiments presented in section 4, one of the electrodes is partially removed to

control the localization of the sample excitation. The corresponding face is then supposed

to be free of metalization. The effect of the remaining electrode on the resonant behavior of

the cube is here studied. The eigenvalue problem is then modified to take into account the

effect of one electrode (see §2.3). The results are compared to Finite Element simulations.

The same nodes and mesh than for the non metalized case are used in the Atila FE code

but the electrical potential is imposed to be null on the face (x, y,−L3) of the cube. Table

4 presents the comparison between the resonant frequencies obtained by the two models.

First of all, it must be noticed that the two sets of results are in good agreement. For the

two methods, only specific modes are sensitive to the electrode. The mean influence of

the metalization is 1.3 % and the maximum difference with the non metalized case is 4.7

%. No significant modification on the mechanical mode-shapes on the metalized surface

has been observed. As a consequence, in the following, the effect of the electrode will

be neglected and symmetry considerations will be supposed to be valid. Note that the

metalization has already been neglected in experimental studies [14] but, to the authors’

knowledge, Table 4 seems to give the first theoretical demonstration of its low influence.
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4 Experimental results and discussion

This section presents the experimental set-up developed to generate and detect the free

vibration of a piezoelectric cube. Two materials have been tested. First of all, the vibra-

tions of a PMN-34.5%PT ceramic (hexagonal symmetry 6mm) with known properties (see

§3.1) are measured to validate the method. Then, the free vibrations of a cube of single

crystal in the tetragonal phase 4mm (PZN-12%PT) are monitored in a way to identify its

characteristics. Both samples have been manufactured by Thales, Resarch & Technology

(Orsay) and the PZN-12%PT cube has been prepared by the Laboratoire des Structures,

Propriétés et Modélisation des Solides (Paris).

4.1 Experimental set-up and materials

Several methods have already been employed to perform acoustic spectroscopy on par-

allelepipeds. They generally involve pinducers or ultrasonic transducers positioned at

the sample corners [18, 22, 14]. These methods are inherently limited by the transducer

bandwidths leading to an inhomogeneous mode excitation. To avoid these problems, an

electrical excitation is performed in the present study. It is delivered through a impedance

analyzer (Agilent 4395A) also allowing to measure the sample electrical resonances and

anti-resonances (Figure 3(a)). It has a very large frequency bandwidth (10kHz - 500MHz)

and the delivered electrical power is set to 0 dBm to 10 dBm depending on the excited

mode. The sample is set on a plastic holder and the electrical contact is ensured by a

metallic strip fixed on a spring so that the free mechanical boundary conditions at the

surfaces of the cube are fulfilled.
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Velocity measurements at the surface of the sample are performed by means of a

Laser vibrometer (Polytech OFV-505) in a way to detect resonance frequencies and the

associated mode-shapes. The interferometer is positioned at 50 cm from the sample

leading to a 20 µm focal area. The velocity decoder sensitivity is respectively 5 mm/s/V

and 25 mm/s/V, depending on the cut-off frequency, respectively 250 kHz and 1,5 MHz.

The measured signals are send to a computer via an oscilloscope (LeCroy 6050A) that

performs a FFT with a sampling frequency between 10 Hz and 500 Hz. The sample

holder is fixed on a two-dimensional micrometer computer controlled translation stage.

This allows to perform measurements of the velocity at 100 points on the surface of the

sample, leading to the representation of the mode-shapes for each resonance.

To perform the electrical excitation, the two surfaces of the sample orthogonal to the

x3 polarization axis are metalized. However, to generate a maximum number of modes, an

electrode patterning has been used bringing to the front the modes’ symmetry. One of the

metalized face is then only partially covered by electrodes (Figure 3(b)) in a way to deliver

enough electrical power while retaining a low electrical environment (null external field).

In this configuration, the excitation of different points on the surface allows to select

the desired modes. Figure 4(a) presents three selected excitation point on the surface

of the cube. The corresponding measured electrical admittance of the PMN-34.5%PT

ceramic cube reveals that the maximum excitation is obtained, for a vibration frequency

of 87500 Hz, when the corner is excited while the two other excitations generate very low

vibrations. This confirms the fact that the corresponding mode is mainly a torsion mode

as shown in Table 2.

Because the sample is excited by the electrical analyzer and that mechanical velocities
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are measured, the detected vibrations are necessary those of piezoactive modes meaning

that full elastic, piezoelectric and dielectric tensors should be recoverable. As expected,

a resonance of the real part of the electrical admittance, measured with the impedance

analyzer, coincides with a mechanical resonance, measured with the laser probe (Figure

4(b)). Mechanical resonances are then first simply identified from the behavior of the real

part of the electrical admittance.

4.2 Inverse problem and identification of the piezoelastic tensor

To identify the material characteristics, a fit procedure has been developed. It allows,

modifying the CE
ijkl, eijk and εS

ij tensors, to match the computed resonant frequencies to

the measured data. Due to symmetry considerations, ten, respectively eleven, constants

have to be identified for hexagonal (6mm) and tetragonal (4mm) symmetry materials,

respectively. The identification protocol is performed on a PMN-34.5%PT ceramic and a

PZN-12%PT single crystal. The sensitivity of each mode to the constants is first theoret-

ically evaluated in a way to isolate the resonances mainly sensitive to only one particular

characteristic. The mode sensitivity study presented in Table 5 is performed for the

PMN-34.5%PT ceramic cube and can easily be transfered to the PZN-12%PT single crys-

tal sample. Table 5 quantifies the resonant mode response in frequency resulting of a

unity step applied on each constant independently. The most interesting modes, sensitive

to one or two constants, are then revealed and the corresponding resonant frequencies are

used to identify the corresponding characteristics. From Table 5, an order of the constant

identification could be the following:
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1. Mode Ag (2) : CE
12,

2. Mode B1g (4) : CE
44,

3. Mode B1g (2) : CE
66,

4. Mode B2/3g (2) : e15,

5. Mode Au (3) : εS
11,

6. Mode Ag (3) : CE
11, CE

33, εS
33

7. Mode B2/3g (8): CE
13, e31, e33.

In a second part, a global fit, based on the simplex routine [23], is performed on the

remaining components of the electromechanical tensor.

4.3 Validation of the method on a PMN-34.5%PT cube

4.3.1 Direct problem

Figure 5 presents the measured modal displacements of the Ag mode and the correspond-

ing computed ones for a 10.02× 10.02× 10.14 mm3 cube of PMN-34.5%PT ceramic. At

the surface of the cube, the displacements are of about 20 nm. Table 6 presents the

comparison between the theoretical predictions and the measured frequencies for the cor-

responding identified modes in the range [85, 275] kHz. The experimental results are in

accordance with the numerical simulations obtained from the initial tensors given in §3.1.

The small differences can be explained by the fact that several shapes of samples were

used to obtain these complete sets of characteristics and that our sample is not one of

those of [21].
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4.3.2 PMN-34.5PT characterization

To characterize our sample, the fitting procedure (§4.2) has been applied with the initial

tensor given in [21]. Table 7 presents the identified characteristics after the fit procedure.

The elastic, piezoelectric and dielectric constants identified from the sensitivity study

have a precision less than 1% while those obtained from the global fit possess a tolerance

from 2 to 3%. These tolerances correspond to charracteristic modifications leading to

an unchanged distance ∆mc between the experimental data and the computed vibrations

given by:

∆mc =

∑
i

∣∣∣f (i)
measured − f

(i)
computed

∣∣∣
∑

i

f
(i)
measured

. (20)

Table 7 shows that the identified constants are in good agreement with the initial ones

[21]. The maximum difference is obtained on the CE
44 elastic constant and is of about 13%.

4.4 PZN-12%PT single crystal characterization

The resonant ultrasound spectroscopy method is now applied to the characterization of a

7.55× 7.52× 7.71 mm3 PZN-12%PT single crystal cube (tetragonal phase). Our sample

is polarized along the [001]c direction leading to a 4mm symmetry. The tested sample

presents internal defects that might alter its resonant behavior (figure 6). However, the

number of the measured modes and their corresponding resonant frequencies are supposed

to be sufficient to identify the electromechanical characteristics of the cube.

No existing electromechanical tensor of a PZN-12%PT single crystal is available in the

literature. However, some materials can possess very close properties especially a PMN-
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x%PT single crystal with a PT ratio inducing a tetragonal symmetry. As a consequence,

the electromechanical properties of a PMN-42%PT single crystal [24] were used to identify

the resonant modes from their respective mode-shapes and the corresponding symmetry

group defined in §2.2. Note that, while the PMN-42%PT single crystal vibrations possess

the same resonant mode-shapes, the corresponding frequencies are different than those of

the PZN-12%PT single crystal.

The studied PZN-12%PT single crystal cube has been prepared in a same way than

the PMN-34.5%PT ceramic sample. In particular, a similar electrode patterning has been

performed. Figure 6 presents the spectrum of the surface velocity measured on one of the

upper corners, in a [94.5, 210] kHz frequency range. The measured resonant frequencies

are presented in Table 8. The measured surface displacements are of about 15 nm. The Ag

mode-shape measured on the PZN-12%PT cube at 122918 Hz is presented on figure 7. It is

compared to the numerical one identified from the PMN-42%PT single crystal properties.

As above, the characterization procedure (§4.2) has been applied to perform a fit of the

computed frequencies to the measured ones. The characteristics presented in Table 9

report, to the authors knowledge, the first complete elastic, piezoelectric and dielectric

tensors of a PZN-12%PT single crystal given in the literature. They are consistent with

tensors of single crystals with close compositions [1, 2, 25].

5 Conclusion

This paper presents the characterization of a PMN-34.5%PT ceramic with the hexagonal

symmetry (6mm) and a PZN-12%PT single crystal in the tetragonal phase (4mm). Res-
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onant Ultrasound Spectroscopy measurements were performed on an experimental set-up

where the electrical excitation of the sample and the laser detection of its mechanical

displacements allow to study piezoelectric coupled vibration modes. Furthermore, a spe-

cific design of the sample electrodes has been proposed in a way to generate all mode

symmetries. To solve the inverse problem and identify the material characteristics, an

attention was particularly payed on the modes’ sensitivity to independant elastic, piezo-

electric or dielectric constants. The method is first validated on the characterization of

a PMN-34.5%PT ceramic cube and results are found to be in good agreement with lit-

erature. The full tensor of a PZN-12%PT single crystal is then presented. The tested

samples were of several hundreds of mm3 but the instrumentation, and particularly the

laser interferometer, should allow to identify characteristics of smaller materials. This

may be very promissing for high frequency applications where few mm3 materials are

used leading to a high dependence of the device behavior to the material microstructure.

A Interaction matrices for a one side metalized paral-

lelepiped

The descriptions of the matrices Γ, Λ et Ω are given in tables 10, 11 and 12. The

functions describing the mechanical displacement are the same than in the non metalized

case (9). The elastic interaction matrix is then that defined in [13]. Taking into account

the functions ϕr (r = 1, . . . , M) of equation (18), the Gk (k = 1, 2, . . . , 9) constitutive of
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the piezoelectric interaction matrix become:

G1 = DλξδµςC
(p)
νη /L2

1, G2 = δλξDµςC
(p)
νη /L2

2,

G3 = δλξδµςD
(p)
νη /L2

3, G4 = δλξEµςF
(p)
νη /L2L3,

G5 = δλξFµςE
(p)
νη /L2L3, G6 = FλξδµςE

(p)
νη /L3L1,

G7 = EλξδµςF
(p)
νη /L3L1, G8 = EλξFµςC

(p)
νη /L1L2,

G9 = FλξEµςC
(p)
νη /L1L2,

(21)

with,

C(p)
νη =

∫ 1

−1

P ν(X)fη(X)dX

=
1

2Π





1 if ν = η,

(ν + 1)/(2ν + 3) if ν + 1 = η,

ν/(2ν − 1) if ν − 1 = η,

0 else,

(22)

D(p)
νη =

∫ 1

−1

dP ν(X)

dX

dfη(X)

dX
dX

= Π





(ν + 1)ν/2 if ν < η,

(η + 1)η/2 if ν > η and ν + η even,

((η + 1)η + 2)/2 if ν > η and ν + η odd,

(23)
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E(p)
νη =

∫ 1

−1

P ν(X)
dfη(X)

dX
dX

= Π





(ν + 1)/(2ν + 1) if ν = η,

1 if ν < η,

0 else,

(24)

F (p)
νη =

∫ 1

−1

dP ν(X)

dX
fη(X)dX

= Π





ν/(2ν + 1) if ν = η,

1 if ν > η,

0 else, ,

(25)

where Π = (−1)η
√

2ν+1
2

.

The Gk (k = 1, 2, . . . , 9) constitutive of the dielectric interaction matrix Λ (Table 12)

become, for a one side metalized parallelepiped:

G1 = Dξξ′δςς′C
(d)
ηη′/L

2
1, G2 = δξξ′Dςς′C

(d)
ηη′/L

2
2,

G3 = δξξ′δςς′D
(d)
ηη′/L

2
3, G4 = δξξ′Eςς′F

(d)
ηη′ /L2L3,

G5 = δξξ′Fςς′E
(d)
ηη′/L2L3, G6 = Fξξ′δςς′E

(d)
ηη′/L3L1,

G7 = Eξξ′δςς′F
(d)
ηη′ /L3L1, G8 = Eξξ′Fςς′C

(p)
ηη′/L1L2,

G9 = Fξξ′Eςς′C
(p)
ηη′/L1L2,

(26)
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with,

C(d)
νη =

∫ 1

−1

fη(X)fη′(X)dX

= Θ





(3η(η + 1)− 2)/(4η(η + 1)− 3) if η = η′,

η′/(2η′ + 1) if η + 1 = η′,

η′/(2η′ + 1)− 1 if η − 1 = η′,

η(η + η′)/H if η − 2 = η′,

η′(η + η′)/H if η + 2 = η′,

0 else,

(27)

(28)

where Θ = (−1)η+η′

2η+1
, and h = 4(2η′ + 1)(η + η′ + 1),

D
(d)
ηη′ =

∫ 1

−1

dfη(X)

dX

dfη′(X)

dX
dX

=





(1 + 2η(η(η + 1) + 1))/2(2η + 1) if η = η′,

(−1)η+η′(η(η + 1) + 1)/2 if η < η′,

(−1)η+η′(η′(η′ + 1) + 1)/2 if η > η′,

(29)
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E
(d)
ηη′ =

∫ 1

−1

fη(X)
dfη′(X)

dX
dX

= (−1)η+η′





1/2 si η = η′,

η′2/2(1− 4η′2) + 1 if η + 1 = η′,

η2/2(1− 4η2) if η − 1 = η′,

0 else,

(30)

F
(d)
ηη′ =

∫ 1

−1

dfη(X)

dX
f ′η(X)dX

= (−1)η+η′





1/2 if η = η′,

η2/2(1− 4η2) + 1 if η − 1 = η′,

η′2/2(1− 4η′2) if η + 1 = η′,

0 else.

(31)

Similarly, Dλξ, Eλξ et Fλξ are given in [13].
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Ag

λ µ ν

Au

λ µ ν
aλµν1 o e e aλµν1 e o o
aλµν2 e o e aλµν2 o e o
aλµν3 e e o aλµν3 o o e

ξ ς η ξ ς η
bλµν e e o bλµν o o e

B1g

λ µ ν

B1u

λ µ ν
aλµν1 e o e aλµν1 o e o
aλµν2 o e e aλµν2 e o o
aλµν3 o o o aλµν3 e e e

ξ ς η ξ ς η
bλµν o o o bλµν e e e

B2g

λ µ ν

B2u

λ µ ν
aλµν1 e e o aλµν1 o o e
aλµν2 o o o aλµν2 e e e
aλµν3 o e e aλµν3 e o o

ξ ς η ξ ς η
bλµν o e e bλµν e o o

B3g

λ µ ν

B3u

λ µ ν
aλµν1 o o o aλµν1 e e e
aλµν2 e e o aλµν2 o o e
aλµν3 e o e aλµν3 o e o

ξ ς η ξ ς η
bλµν e o e bλµν o e o

Table 1:
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Mode Resonant frequency Mode shape Mode Resonant frequency Mode shape

Ag

124892 Hz

126963 Hz
Au

86356 Hz

151755 Hz 88345 Hz

166493 Hz

B1g

112133 Hz

B1u

114431 Hz

139257 Hz 164086 Hz

167537 Hz 168691 Hz

B2g

133978 Hz

B2u

111470 Hz

153178 Hz 139062 Hz

167337 Hz 167254 Hz

B3g

133978 Hz

B3u

111470 Hz

153178 Hz 139062 Hz

167337 Hz 167254 Hz

Table 2:
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Variational model 86356 88345 111470 111470 112133 114431

FE model 86419 88384 112311 112311 112225 114450

Difference (%) −0.07 −0.04 −0.75 −0.75 −0.08 −0.13

Variational model 124892 126963 133978 133978 139062 139062

FE model 125610 126961 134169 134169 139466 139466

Difference (%) −0.57 0.001 −0.14 −0.14 −0.29 −0.29

Variational model 139257 151755 153178 153178 164086 166493

FE model 140412 153629 153213 153213 164572 166637

Difference (%) −0.83 −1.23 −0.02 −0.02 −0.29 −0.09

Variational model 167254 167254 167337 167337 167537 168691

FE model 167646 167646 168073 168073 167807 169318

Difference (%) −0.23 −0.23 −0.44 −0.44 −0.16 −0.37

Table 3:
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Variationnal Method F. E. Simulations

−L3 Face Difference with −L3 Face Difference with

metalized no electrode metalized no electrode

85131 Hz -1.42 % 85367 Hz -1.22 %

88337 Hz -0.01 % 88382 Hz 0.00 %

108148 Hz -2.98 % 108780 Hz -3.14 %

108148 Hz -2.98 % 108780 Hz -3.14 %

111850 Hz -0.25 % 111938 Hz -0.26 %

113955 Hz -0.42 % 114403 Hz -0.04 %

124141 Hz -0.60 % 124313 Hz -1.03 %

126963 Hz 0.00 % 126960 Hz 0.00 %

127631 Hz -4.74 % 128239 Hz -4.42 %

127631 Hz -4.74 % 128239 Hz -4.42 %

138745 Hz -0.23 % 139107 Hz -0.26 %

138745 Hz -0.23 % 139107 Hz -0.26 %

136826 Hz -1.75 % 137334 Hz -2.19 %

151206 Hz -0.36 % 152726 Hz -0.59 %

152899 Hz -0.18 % 152646 Hz -0.37 %

152899 Hz -0.18 % 152646 Hz -0.37 %

161225 Hz -1.74 % 164059 Hz -0.31 %

165260 Hz -0.74 % 164902 Hz -1.04 %

Maximum relative difference: -4.73% Maximum relative difference: -4.42%

Mean relative difference: 1.31% Mean relative difference: 1.28%

Table 4:
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Hz / GPa Hz / (C/m2) Hz / (nF/m)

Mode CE
11 CE

33 CE
44 CE

66 CE
12 CE

13 e15 e31 e33 εS
11 εS

33

Ag (2) 604 0 0 0 -1225 -14 0 -3 0 0 0

Ag (3) 233 596 3 7 236 -632 6 817 1436 -48 -1064

B1g (2) 17 23 1 2004 -3 -28 -4 -14 24 -5 -7

B1g (4) 126 90 1016 76 -180 -87 13 -14 31 -13 -5

B2/3g (2) 62 68 1278 3 -203 63 1045 43 58 -437 -16

B2/3g (8) 1061 878 289 211 -152 -1935 -293 -1757 1591 -381 -845

Au (2) 9 2 738 512 -16 -2 44 0 0 0 0

Au (3) 22 98 799 840 2 -67 727 -10 21 -289 -6

Table 5:
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Measured Symmetry Computations Measured Symmetry Computations

fr group fr group

88750 Hz Au 86537 Hz 209100 Hz B1u 209709 Hz

107900 Hz B2u - B3u 110236 Hz 212100 Hz B2g - B3g 217815 Hz

119600 Hz B1g 111916 Hz 229800 Hz Ag 230660 Hz

138700 Hz B1g 137661 Hz 241500 Hz Ag 238011 Hz

148700 Hz Ag 150606 Hz 249700 Hz B2u - B3u 246100 Hz

168500 Hz B1u 164217 Hz 252900 Hz B1u 233247 Hz

178600 Hz Ag 180455 Hz 258700 Hz Ag 267737 Hz

206600 Hz B2u - B3u 212839 Hz

Table 6:
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Properties Unity
Values Identified

from [21] values

Density ρ kg/mm3 8060

Elastic constants

CE
11 GPa 168,8 174,7

CE
12 GPa 116,83 116,61

CE
13 GPa 116,80 119,3

CE
33 GPa 154,43 154,8

CE
44 GPa 30,56 26,7

CE
66 GPa 25,97 29,0

Dielectric permitivitty
εS
11 ε0 2367 2373

εS
33 ε0 2622 2825

Piezoelectric constants

e15 C/m2 16,66 17,1

e31 C/m2 -6,92 -6,4

e33 C/m2 30,15 27,3

∆mc 5, 2.10−2 1, 8.10−2

Table 7:
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Measurements Symmetry group Measurements Symmetry group

82750 Hz B2u - B3u 396871 Hz Ag

108495 Hz Ag 314504 Hz Ag

122918 Hz Ag 293695 Hz Ag

136818 Hz Au 288500 Hz Au

161336 Hz Ag 251734 Hz B2u - B3u

168527 Hz B1u 203693 Hz B2g - B3g

191593 Hz B2u - B3u 195184 Hz Au

Table 8:
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Properties Unity Values Tolerance

Density ρ kg/mm3 8380

Elastic constants

CE
11 GPa 152 ±2

CE
12 GPa 87 ±1

CE
13 GPa 90 ±0,5

CE
33 GPa 84 ±2

CE
44 GPa 37 ±3

CE
66 GPa 22 ±1

Dielectric permitivitty
εS
11 ε0 2420 ±150

εS
33 ε0 331 ±50

Piezoelectric constants

e15 C/m2 35 ±3
e31 C/m2 -3 ±0,5
e33 C/m2 4 ±1

∆mc 0,95

Table 9:
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(i,j) Γpp′

(1,1) CE
11G1 + CE

66G2 + CE
55G3 + CE

56G4 + CE
56G5 + CE

15G6 + CE
15G7 + CE

16G8 + CE
16G9

(2,2) CE
66G1 + CE

22G2 + CE
44G3 + CE

24G4 + CE
24G5 + CE

46G6 + CE
46G7 + CE

26G8 + CE
26G9

(3,3) CE
55G1 + CE

44G2 + CE
33G3 + CE

14G4 + CE
14G5 + CE

35G6 + CE
35G7 + CE

36G8 + CE
36G9

(2,3) CE
56G1 + CE

24G2 + CE
34G3 + CE

44G4 + CE
23G5 + CE

36G6 + CE
45G7 + CE

25G8 + CE
46G9

(3,1) CE
15G1 + CE

46G2 + CE
35G3 + CE

36G4 + CE
45G5 + CE

55G6 + CE
13G7 + CE

14G8 + CE
56G9

(1,2) CE
16G1 + CE

26G2 + CE
45G3 + CE

25G4 + CE
46G5 + CE

14G6 + CE
56G7 + CE

66G8 + CE
12G9

Table 10:
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i Ωpr

1 e11G1 + e26G2 + e35G3 + e25G4 + e36G5 + e31G6 + e15G7 + e16G8 + e21G9

2 e16G1 + e22G2 + e34G3 + e24G4 + e32G5 + e36G6 + e14G7 + e12G8 + e26G9

3 e15G1 + e24G2 + e33G3 + e23G4 + e34G5 + e35G6 + e13G7 + e14G8 + e25G9

Table 11:
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Λrr′

εS
11G1 + εS

22G2 + εS
33G3 + εS

23G4 + εS
32G5 + εS

13G6 + εS
31G7 + εS

12G8 + εS
21G9

Table 12:
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Figure 1:
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(a) (b)

(c) (d)

Figure 2:
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(a) Experimental set-up (b) Cube with designed elec-
trode

Figure 3:
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(a) real part of the electrical admittance for three
different excitation points.

(b) Superposition of the electrical and mechanical
resonance spectra of the PMN-34.5%PT ceramic
cube.

Figure 4:
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(a) Measured at 241500 Hz

Ag

(b) Computed at 238011 Hz

Figure 5:
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Figure 6:
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(a) Measured frequency: 122918 Hz (b) Ag mode-shape

Figure 7:
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