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Molecular Dynamics (MD) is a numerical simulation technique based on classical mechanics. It
has been taken for granted that its use is limited to a large temperature regime where classical
statistics is valid. To overcome this limitation, the authors introduce in a universal way a Quantum
Thermal-Bath that accounts for quantum statistics while using standard MD. The efficiency of the
new technique is illustrated by reproducing several experimental data at low temperatures in a
regime where quantum statistical effects cannot be neglected.

PACS numbers: 02.70.Ns, 65.40.Ba, 65.40.De, 67.25.B-

Since the first work of Fermi, Pasta and Ulam in 1955
[1], molecular dynamics (MD) simulation is frequently
used to investigate and predict properties of condensed
matter. For a crystal, these calculations are valid in the
classical limit i.e. for temperatures higher than the De-
bye temperature. For example, in the case of a harmonic
interatomic potential, the calculated heat capacity is con-
stant at all temperatures and equals the limit value of
Dulong and Petit (1819) [2]. However, it is well known
that the experimental heat capacity decreases when tem-
perature decreases and vanishes at 0K. In addition, due
to the quantum fluctuations according to the Heisenberg
uncertainty principle, the energy of the system at 0K
called “zero-point energy” is larger than the potential
energy minimum. These properties are a direct conse-
quence of the quantization of the energy of the vibration
modes. These effects cannot be accounted for by using
standard MD because it is based on classical statistics.

Since Planck’s pioneering work, we know that there is
a profound connection between the quantization of the
energy and its spectral density at thermal equilibrium.
Hence the idea of inserting in a classical treatment, ran-
dom sources with a power spectral density that accounts
for energy quantization. Rytov [3] has shown that intro-
ducing the power spectral density of current densities de-
rived from the quantum fluctuation dissipation theorem
allows to recover the blackbody radiation field. Using
this approach, Lifshitz [4] has computed a pure quantum
effect: the Casimir force between two metallic plates. In-
spired by these works, we introduce here a general and
straightforward procedure to simulate a thermal bath
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FIG. 1: QTB-MD simulation of a one-dimensional harmonic
oscillator (HD molecule). The vibrational energies computed
with the QTB and standard MD are compared to the expected
energies given by θ(ω,T ); (ω = 6.84 × 1014 rad s−1 [17]).
It is seen that the QTB-MD allows to recover the quantum
behaviour at low temperature.

that allows to include energy quantization effects into
standard MD calculations.

Our approach differs from previous efforts. In the
quantum molecular dynamics technique introduced by
Car and Parrinello in 1985 [5], the interatomic forces are
calculated quantum mechanically but the nuclei dynam-
ics is described using standard MD. In order to include
statistical quantum features into MD, several approxima-
tions have been proposed in the literature. The MD tem-
perature can be rescaled to an effective one [6] in order to
recover the mean quantum vibrational energy. However,
this method does not reproduce the correct energy spec-
trum. The Wigner-Kirkwood approximation [7, 8], based
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on an expansion of the free energy in powers of Planck
constant, can be used to correct the standard MD results
but has a limited range of validity. Cao and Voth intro-
duced the centroid molecular dynamics method [9] based
on the Feynman path centroid density [10]. This tech-
nique has been widely used to study quantum correla-
tions in liquids [11]. Very recently an approach based on
a generalised Langevin equation of motion has been pro-
posed by Wang [12] to derive the conduction heat transfer
through a one dimensional linear chain of atoms between
two heat baths that accounts for quantum Bose-Einstein
statistics. A recent review [13] summarizes the state of
the art and the need for the development of a technique
that could include quantum statistical effects in MD.

In this work, we present a technique that accounts for
quantum statistics by introducing a Quantum Thermal-
Bath (QTB). The method is valid at any temperature
and for any interatomic potential as well as for ab initio

schemes. The basic idea of the QTB is to use a Langevin-
type approach. We introduce both a dissipative force and
a Gaussian random force having the power spectral den-
sity given by the quantum fluctuation-dissipation the-
orem [14]. When following this approach, a difficulty
arises. The power spectral density depends on the dis-
sipation. For linear problems, the imaginary part of the
response function of the system is usually well-known and
the power spectral density can be computed easily. When
dealing with atomic vibrations, such an information is
not so well-known and depends significantly on the tem-
perature. To avoid this difficulty, we include a dissipative

force that only serves the purpose of thermalizing the sys-
tem. If we choose the dissipative force weak enough so
that the broadening of the energy spectrum is negligible,
the physical output of the model will not be affected by
the dissipative force. The equation of motion of the ith

atom of mass mi obeys the Langevin-like equation

mi r̈iα = fiα + Riα − mi γ ṙiα (1)

where riα and fiα are the α (1, 2 or 3) components of the
position and the force exerted by all the other atoms. The
QTB is characterised by a Gaussian random force, Riα,
and an effective frictional coefficient, γ. The stochas-
tic force spectrum is not a white noise. Its power spec-
tral density is related to γ by the quantum mechanical
fluctuation-dissipation theorem [14]

IRiα Rjβ
(ω) = 2mi γ δijδαβ θ(|ω|, T ) (2)

where

θ(ω, T ) = 1
2
~ω + ~ω [exp (~ω/kBT ) − 1]

−1
, (3)

δij and δαβ are the Kronecker symbol and kB is the
Boltzmann constant. It is important to emphasize that
the zero-point energy contribution is taken into account
through the term 1

2
~ω in θ(ω, T ). The correlation func-

tion must satisfy the Wiener-Khinchin theorem

〈Riα(t)Rjβ(t + τ)〉 =

∫ +∞

−∞

IRiαRjβ
(ω) exp[−iωτ ]

dω

2π
· (4)

The random force Riα(t) is computed using the numer-
ical technique [15] designed to generate Gaussian ran-
dom rough surfaces with prescribed correlation function.
Note that the different random forces are uncorrelated
and that the total random force does not necessarily van-
ish for a finite number of atoms. In order to avoid the
induced collective motion of the system, Riα is replaced

by Riα − mi

∑N

j=1 Rjα

/

∑N

j=1 mj. Finally, the coupled

equations of motion are solved using standard MD algo-
rithms [16]. The typical time to reach thermal equilib-
rium is about some γ−1.

We first apply the method to a simple system: the
HD diatomic molecule using the harmonic approxima-
tion [17]. Figure 1 shows that the QTB allows to recover
the mean energy θ(ω, T ) of a quantum oscillator, whereas
the standard MD predicts that the energy goes to zero at
low temperature. In the case of this simple system, sim-

ulation results are independent of the effective frictional
coefficient γ, provided that γ δt << 1 and the number
of MD steps is large enough, where δt is the integration
time step.

We now apply the technique to study a MgO crystal
using the interatomic potential proposed by Matsui [18].
We first examine whether the numerical parameter γ in-
fluences the physical results. Figure 2 shows the influence
of γ on the simulated linewidth of the infrared absorption
spectrum. It is clear that in this case, using a γ value up
to 0.3 THz does not affect the results. More generally, γ

must be chosen lower than the linewidths of the spectral
density. Figure 3 compares QTB-MD and experimental
measurements [19] of the lattice parameter and the heat
capacity at temperatures lower than the Debye one. The
main result is that the QTB-MD allows to recover the
experimental results at low temperatures whereas stan-
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FIG. 2: Influence of the effective frictional coefficient γ. We
study the infrared absorption spectrum of a MgO bulk at
10K. Results were obtained by using a box of 64 atoms. The
inset displays the imaginary part of the dielectric constant,
εr”, derived from the Fourier transform of the polarisation
correlation. The figure shows the FWHM (full width at half
maximum) of the peak.

dard MD fails. It is important to note that the Wigner-
Kirkwood quantum correction made by Matsui [18] in
the case of MgO leads to the expected behaviour of the
heat capacity and the lattice parameter as a function of
temperature but only above 500K. On the contrary, it
is clear that the QTB takes into account the quantum
effects at all temperatures.

Finally, we apply the technique to study 4He at nor-
mal pressure and in the temperature range 2.17−4.23 K.
In theses conditions, pure 4He is a nonsuperfluid liquid.
The crystalline state is observed for pressures higher than
≈ 25 bar [20]. In figure 4, we compare the radial distri-
bution function obtained using QTB and standard MD
simulations with a Lennard-Jones (LJ) potential [21], at
normal pressure and 2.5 K. It is seen that the standard
MD method leads to a stable solid state whereas the
QTB-MD simulation predicts a liquid phase in agree-
ment with experiments. The key ingredient here is that
QTB-MD accounts for the zero-point energy which is a
pure quantum effect. To go beyond this qualitative re-
sult, we computed the self-diffusion coefficient from the
time-dependent mean-square displacement and the Ein-
stein formula. We found 1.9 ± 0.1 × 10−4 cm2/s at 4 K
with a density of about 19.5 atom nm−3. This value
is in good agreement with the experimental one esti-
mated in the same conditions: 1.5 ± 0.2 × 10−4 cm2/s
[22]. Using the same LJ potential and a Feynman-Hibbs
approach which includes quantum corrections, a much
higher value of 6.3 × 10−4 cm2/s was found [26]. The
path integral centroid molecular dynamics based on an-
other empirical potential leads to a much lower value
(0.506 ± 0.004 × 10−4 cm2/s) [27]. The QTB method
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FIG. 3: QTB-MD simulation of a MgO crystal. (a) Temper-
ature dependence of the lattice parameter, a. The a0 value
is obtained by extrapolating, to 0K, the linear behaviour ob-
served at high temperature. The QTB-MD reproduces the
experimental data at low temperatures. (b) Temperature de-
pendence of the heat capacity per molecule, CV . The QTB
values (obtained by differentiation of the mean energy) agree
with the experimental data and the results derived using
the harmonic density of vibrational states (DOS). The stan-
dard MD simulation gives reliable values only at temperatures
higher than the Debye temperature (940K) [19].

appears to be a simple and reliable technique to study
liquids at low temperatures.

To summarize, a simple technique to generate a quan-
tum thermal-bath has been introduced. The method is
easy to include in any standard MD simulation code and
is independent of the system under study. It can be im-
plemented using either phenomenological potentials or a
first-principle description. It has been shown that ther-
mal expansion and heat capacity of a solid can be success-
fully predicted at low temperatures. By accounting for
the energy of quantum fluctuations, the technique allows
to recover the liquid behaviour of 4He above the λ point.
All these examples are beyond the reach of standard MD.
We think that the QTB method will significantly extend
the domain of application of MD. For example, combin-
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FIG. 4: QTB-MD simulation of the nonsuperfluid liquid 4He
at T = 2.5K. The feature of the radial distribution function,
g(r), allows to determine the phase of the simulated system:
solid or liquid. g(r) is calculated using both the QTB and
standard MD. Results were obtained by using a box of 256
atoms. The QTB-MD predicts the experimentally observed
liquid phase whereas the standard MD leads to a solid one.

ing the QTB method and the Car-Parrinello approach [5]
will provide a new powerful technique including quantum
effects for both electrons and nuclei.

J. J. Greffet is indebted to J. J. Sáenz with whom the
initial idea of this work was generated.

† Corresponding author: hichem.dammak@ecp.fr
[1] E. Fermi, J. R. Pasta and S. M. Ulam, LA-1940 (Los

Alamos Rept, 1955); Collected works of E. Fermi II, 978
(Press Chicago, Univ. Chicago, 1965).

[2] A. T. Petit and P. L. Dulong, Annales de Chimie et de
Physique 10, 395 (1819).

[3] S. M. Rytov, Sov. Phys. JEPT 6, 130 (1958).
[4] E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 (1955). Sov.

Phys. JETP-USSR 2, 73 (1956).
[5] R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471

(1985).
[6] C. Z. Wang, C. T. Chan and K. M. Ho, Phys. Rev. B 42,

11276 (1990).
[7] E. Wigner, Phys. Rev. 40, 749 (1932).
[8] J. G. Kirkwood, Phys. Rev. 44, 31 (1933).
[9] J. Cao and G. A. Voth, J. Chem. Phys. 101, 6168 (1994).

[10] R. P. Feynman and A. Hibbs, Quantum mechanics and

path-integral (McGraw-hill, New York, 1965).
[11] U. W. Schmitt and G. A. Voth, J. Chem. Phys. 111, 9361

(1999).
[12] J. S. Wang, Phys. Rev. Lett. 99, 160601 (2007).
[13] H. M. Miller, PNAS 102, 6660 (2005).
[14] H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
[15] A. A. Maradudin, T. Michel, A. R. McGurn and E. R.

Mndez, Ann. Phys. 203, 255 (1990).
[16] H. J. C. Berendsen and W. F. van Gunsteren, in Pro-

ceedings of the International School of Physics “Enrico

Fermi”, Course 97, edited by Cicotti, G. & Hoover,
W. G., (North Holland Physics Publishing, Amsterdam,
1986).

[17] F. T. Prochaska and L. Andrews, J. Chem. Phys. 67,
1139 (1977).

[18] M. Matsui, J. Chem. Phys. 91, 489 (1989).
[19] O. L. Anderson and placeI. Suzuki, J. Geophys. Res. 88,

3549 (1983).
[20] B. L. Holian, W. D. Gwinn and A. C. Luntz, J. Chem.

Phys. 59, 5444 (1973).
[21] J. De Boer and A. Michels, Physica, 5, 945 (1938).
[22] The experimental value of the self-diffusion coefficient is

not available for the liquid phase but one can estimate
its value from the viscosity [23] η: D=κηρ, where ρ is
the mass density and κ a coefficient depending on the
interatomic potential. From the value [24] of η (3.3±0.3×
10−6 Pa s) and the expected value of κ (0.6) according to
the LJ potential [25], D is about 1.5± 0.2× 10−4 cm2/s.

[23] D. A. McQuarrie, Statistical mechanics. (Harper’s Chem-

istry series, New York, 1973).
[24] Experimental values available from

http://webbook.nist.gov/chemistry/fluid/.
[25] R. L. Rowley and M. M. Painter, Int. J. Thermophys.

18, 1109 (1997).
[26] E. K. Goharshadi, M. Abbaspour, H. Kashani and M.

Baherololoom, Theor. Chem. Account. 119, 355 (2008).
[27] S. Miura and S. A. Okazaki, J. Chem. Phys. 110, 4523

(1999).


