
Dammak et al. Reply: In their Comment, Barrozo and
de Koning [1] make two remarks about the quantum ther-
mal bath (QTB) introduced in our Letter [2]: QTB is (i) an
approximate method when dealing with anharmonic po-
tentials, (ii) inconsistent with the second fluctuation-
dissipation theorem. We fully agree with the first comment
but we disagree with the second assertion.

Let us first clarify the issue regarding the consistency of
the QTB with the second fluctuation-dissipation theorem.
The spectrum of the correlation function of the force
fluctuation [3] is the product of two terms which can
both depend on frequency producing a colored spectrum:
the friction coefficient �ð!Þ and the energy Eð!; TÞ. To
include the statistical quantum effects that appear when the
condition @! � kBT is not fulfilled, we use the colored
form Eð!;TÞ ¼ @!

2 cothð @!
2kBT

Þ instead of its classical limit
kBT. As explained in the Letter [2], we use a nondispersive
friction coefficient � as a technical parameter of the QTB-
molecular dynamics (MD). This is fully consistent with
the fluctuation-dissipation theorem. In the QTB-MD, the
dynamics and the associated relaxation processes are
produced by the interaction between nuclei.

Regarding the comment on the role of anharmonicity,
we note that one should clearly separate quantum effects
associated with the dynamics of the system (Newton’s
equations or Schrödinger equation) and quantum effects
associated with the statistical average (kBT or Eð!; TÞ).
Ehrenfest theorem shows the equivalence of classical and
quantum dynamic equations for harmonic potentials. This
is no longer valid for anharmonic potentials so that it is not
surprising to observe differences when introducing anhar-
monicity. The question is how important is their impact on
the results for realistic potentials.

The QTB accounts for quantum dispersion effects of
nuclei while using standard molecular dynamics (MD).
This approach is, in particular, applied to systems de-
scribed by anharmonic potentials, like MgO crystal or
nonsuperfluid liquid 4He. The good agreement of the re-
sults of our computations with experiments shows the
efficiency of the method also in the case of anharmonic
models.

We have compared QTB-MD, path integral molecular
dynamics (PIMD) [4] and the exact solution for two types
of nonlinear oscillators. The exact results were derived by
solving numerically the Schrödinger equation and occupy-
ing the resulting eigenstates with the proper Boltzmann
factor. The exact solution for both oscillators is well re-
produced by PIMD simulations, whereas the QTB-MD
exhibits some inconsistency, that is to say an incorrect
sampling near the minimum of the potential [Fig. 1(a)].
The quartic potential is an interesting case to test the
influence of anharmonicity because it is an example in
which the harmonic term is lacking. However, this model
is very far from standard potentials. For the Morse
potential [Fig. 1(b)], the discrepancy between the predic-

tion by the QTB-MD and the exact solution is much
weaker than for the quartic oscillator. This disagreement
does not clearly impact the quantum effect on physical
quantities such as average position and linear expansion,
total energy and heat capacity, etc. For instance, the aver-
age position and the vibrational amplitude are equal to
0.0162 Å and 0.078 Å for the PIMD computation, whereas
the QTB-MD yields 0.0163 Å and 0.079 Å, respectively.
In summary, the PIMD method can provide the exact

position distribution even for anharmonic systems. This
method is very time consuming and therefore the range of
its applicability is reduced. The QTB-MD technique is an
approximate approach that yields accurate results and
saves at least 2 orders of magnitude of computation time
compared to the PIMD method.
The authors gratefully acknowledge Grégory Geneste

for contribution to this Reply.

Hichem Dammak,1,2,* Marc Hayoun,2 Yann Chalopin,3

and Jean-Jacques Greffet4
1Laboratoire Structures
Propriétés et Modélisation des Solides
CNRS UMR 8580, Ecole Centrale Paris
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FIG. 1. Position probability density at 300 K of one-
dimensional oscillators obtained by QTB-MD and PIMD simu-
lations and compared to the exact solution. (a) quartic oscillator:
VðxÞ ¼ Ax4, m ¼ 0:98 gmol�1, A ¼ 0:2 eV �A�4. (b) Morse
potential of HCl molecule [5]: VðxÞ ¼ Dðe��x � 1Þ2, m ¼
0:98 gmol�1, D ¼ 4:6141 eV, � ¼ 1:81 �A�1.
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