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Abstract

Dense (3 xX)Pb(Iny2Nby,2)Os—xPbTiO; (PIN-PT) ceramics were synthesised by hot forging and thermal grain growth)IN—xPT

phase diagram was investigated by X-ray diffraction and dielectric measurements. The morphotropic phase boundary zone was found to be

between a rhombohedral phase region for low PT contents and a tetragonal phase region for high PT contents, i.e. in thg &84e0/39
mixture of tetragonal and probably monoclinic phases was observedf@/37 at room temperature.
© 2005 Published by Elsevier Ltd.

Keywords: Powder-solid state reaction; X-ray methods; Dielectric propertiesy\Rkite; Structural transition temperatures

1. Introduction X-ray diffraction to highlight the structural ferroelectric tran-s-
sitions when increasing the temperature. The phase transitign
Lead-based relaxor ferroelectric solid solution ceram- temperatures were compared with the anomalies tempesa-
ics with (1— x)Pb(B;B2)O3—xPbTiOs3 (B1 =Mag, In, Sc, Yb; tures observed in the dielectric constant curves. 40
B2=Nb, Ta) formula exhibit excellent dielectric and elec-
tromechanical properties, especially at compositions near the
morphotropic phase boundary (MPB). Such complex per-
ovskites are of greater interest for piezoelectric actuators,

underwater and medical transducers. . . .
(1 — X)Pb(Mg/3Nba/3)O3-xPbTiOz (PMN—PT) solid so- PIN—PT perovskite powders were synthesised by solié

lution offers a large set of ferroelectric/piezoelectric proper- Stte reaction via Woliramite method. Wolframite phase:

ties and exhibits Curie temperatufk) values from 120 to ~ °Xide (INNbQy) was formed at 1100C for 24h. The
170°C depending on the composition. These [yprevent perovsklt_e powder, calcined at 850 for 2h, was then a5
the use in more general applications. It has been reported thapressed into pellets and hot-forged at 1000fo_r 1h with o
the system of (& X)Pb(InsNby/2)Os—xPbTiOz (PIN-PT) a pressure of 1T/cfa The hot-forged ceramics were fi- 4
near its MPB = 0.37), which separates the pseudo-cubic nally annealed under adlow at 1200°C for 4 h. Yellow 4

and tetragonal phases, presents a high Curie temperaturé?ale translucent ceramics with high densities (>98%) were

Tc ~ 300°C? and therefore potential for similar applications. achieved. _ e *
This paper reports a new study of the PIN-PT PIN-PT poled discs were milled in liquid nitrogen for s

phase diagram. Three compositions: 0.68PIN—0.32PT powder X-ray diffraction. The X-ray experiments were pers:

0.63PIN-0.37PT and 0.58PIN—0.42PT have been studied by/CrMed onahigh-accuracy two-axes diffractometer using Cu
KB monochromatic radiation issued from a Rigaku rotating:

anode (RU300, 18 kW). Selected regions of the diffractograsa

* Corresponding author. Tel.: +33 1 41 13 15 84; fax: +33 141 13 14 37. containing the (11 l)' (0 O 2), (0 %MZ) and (222) peaks_ were

E-mail addressesaugier@spms.ecp.fr, recorded and then fitted with Topazeoftware to determine s
christophe.augier@thalesgroup.com (C. Augier). the peaks position and to calculate the lattice parameters.

2. Experimental procedures a

0955-2219/$ — see front matter © 2005 Published by Elsevier Ltd.
doi:10.1016/j.jeurceramsoc.2005.03.076
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3. Results and discussion presents a shoulder on the left sideTat190°C, showing
that a rhombohedral-tetragonal phase transition occurs 7at
Fig. 1presents X-ray diffraction spectra of PINRT com- TrT ~190°C (Fig. 2b). 80
positions. For PIN-0.37PT, the tetragonal phase is clearly observed

At room temperature, X-ray patterns show clearly that between 150C andT. (Fig. 1c). Atroom temperature, (200) &
0.58PIN-0.42PT exhibits a tetragonal phase characterised byand (2 2 2) reflections are large and present several shouldess.
a doublet of the (2 00) reflection and a singlet of the (111) (200) reflection presents three well-defined peaks whereas
one Fig. 1a)# With increasing the temperature, the two peaks (2 2 2) reflection presents a diffuse shoulder on the left side.
ofthe (2 0 0) reflection become closer and format 330°C Two different hypotheses can be considered. First, a mixtuse
a single peak characteristic of the cubic phase. The temper-between a tetragonal phase and a rhombohedral phase: ¢he
ature dependence of the tetragonal and cubic lattice param+hombohedral phase would be responsible for peak 3 and the
eters is represented ig. 2a. At room temperature, the lat- tetragonal phase for peaks 1 and 2 of the (2 00) reflectioa.
tice parameters of the tetragonal phasesgre 4.022A and Then, a mixture between a tetragonal phase and a monoclisic
cr=4.132A. phase: peak 1 would be indexed as (09 peak 2 should be o

For 0.68PIN-0.32PT, X-ray patterns obtained at room the superposition of (02 })and (2 0 0 reflections and peak o
temperature show that (200) reflection is large and sym- 3 should be the superposition of (0 Q2and (20 0y reflec- o
metric whereas (1 11) is large and presents a shoulder on thdions. By comparing these results with those obtained on the
left side Fig. 1b). Reticular distances deduced from (111), morphotropic compositions of PSN-PTPMN-PT:" and s
(200) and (220) reflections suggest that the ferroelectric PZN-PTS this latter hypothesis seems to be the most probs
phase at room temperature is rhombohedral. With increas-able. A Rietveld analysis is necessary to clearly identify the
ing the temperature, (111) becomes symmetric and (2 0 0)low-temperature phase. On the other hand, with increasing

T=25C
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Fig. 1. (200), (111) and (22 2) peaks of 0.58PIN-0.42PT (a), 0.68PIN-0.32PT (b) and 0.63PIN-0.37AE=(@pand 190C.
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Fig. 2. Temperature dependences of the 0.58PIN-0.42PT (a) and 0.68PIN-0.32PT (b) lattice parameters and 0.63PIN-0.37PT (2 0 0) peak itslecplanar dis

(©.

the temperature, the intensity of peak 3 decreases and van-
ishes atTyt ~ 150°C showing the monoclinic—tetragonal

(.) eydiy

Fig. 3shows the dielectric properties of {IX)PIN—xPT
poled ceramics during a zero-field heating run (ZFH). The

phase transitionkig. 2c represents the temperature depen- dielectric curves, obtained at 1 kHz, present maximB.ak

dency of these (2 00) peaks reticular distances.

103

105

corresponding to the well known tetragonal—cubic phase tran-
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Fig. 3. Temperature dependence of the dielectric consggrm 1kHz for different compositions of poled AX)PIN-xPT ceramics.
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350 . . ' : . ; according to their diagram. These results show that the mes-
: ] photropic phase boundary is not described by a quasi-vertical
200F 1 line but by an extended region arourd 0.37. This region 1z
ik ] is between a rhombohedral phase region for low PT contemts
; - ] and a tetragonal phase region for high PT contents. 132
F O Tmax 1
~ 200 oT ]
> : u] T:: ]
[ I B Trr-Ti b .
1501 — 3 4. Conclusions 133
100f ]
; T ] The X-ray study has revealed that the MPB zone af
50F ] (1 —x)PIN—PT system separates a rhombohedral phase
; ] for low PT compositions from a tetragonal phase fags
Vs oos G5 025 08 OAE 08 high PT compositions. The composition near _the MPBs;
X 0.63PIN-0.37PT, hasla of 290°C and presents a first struc-zs
tural transition from probably a monoclinic phase to a tetrags
Fig. 4. Phase diagrams of 4x)PIN-xPT system, solid line Alberta et Al. onal phase afyT ~ 150°C. 140

sition. As expected]max increases withkx and remains be-
tween those of pure PIN and pure PT that are observed at 66 nci
. " . ncited reference

and 490°C, respectively-3 In addition the relaxor behaviour,
which is observed for low values »fdisappears for > 0.32. 1

For x=0.25, 0.30 and 0.32 the dielectric curves '
present another anomaly at a temperatlyelower than
Tmax As shown above, this anomaly corresponds to the References
rhombohedral-tetragonal phase transition. This anomaly is
less marked fox=0.37 (cf. insert ofirig. 3 and non-existent 1 jemery, H. @ramiques oriedes hautes performances Pb@dg

141

142

143

144

for x=0.42. T, seems to slightly vary around 260G for Nby/3)Os—PbTiQ; par croissance interfaciale. Ph.D. thesis. Thales Ress
0.25<x=<0.32 and then decreases rapidly+d20°C at search & Technology, France, December 2003. 146
x=0.37. 2. Alberta, E. F. and Bhalla, A. SJ. Korean Phys. S0c.1998, 32, 147

1265-1267. 148

Fig. 4represents in a diagram the structural transition tem—s_ Alberta. E. F. and Bhalla, A. SJ. Phys. Chem. Solid2002, 63, s

peratures determined by the dielectric stutiydx and T1) 1759-17609. 150
and the X-ray diffraction studyl¢, Trr andTt) as a func- 4. Planes were indexed using the pseudo-cubic axes. 151
tion of the PT compositiox. The dielectric and the X-ray 5. Haumont, R., Dkhil, B., Kiat, J. M., Al-Barakaty, A., Dammak, H. ancis>
results give comparable transition temperaturesfo8.32, 5 i‘?"ta'f;h&v '-L-J'Phys\-( RSZH?ZB?OE uda M. Malibert. C. and Calvarin

_ . . Klat, J. M., Uesu, Y., Il, b., Matsuda, M., Malibert, C. an alvaringsa
0.37 and 0.42. Fox=0.25 and 0.30, the presented dielec G.. Phys. Rev. B2002, 65, 064106-1—4. -

tric results are coherent with those obtained previously in ;. «umar Singh, A. and Pandey, O\, Phys. Condens. Matte2001,13, 156

the same conditions by Alberta et Awhereas an important 931-936. 157
difference is observed for=0.37. The low temperature tran- 8. Renault, A. E., Dammak, H., Calvarin, G., Pham Thi, M. and Gauchess
sition occurs towards-150°C instead of 20C as expected P..Jpn. J. Appl. Phys.2002,41, 1-5. 159
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