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Abstract

The charge-balanced random-layer model for ordered lead-based perovskites PbðBII
1=3BV

2=3ÞO3 was investigated by using the standard Metropolis

Monte Carlo method on a rigid lattice with simple ionic model. Our results show that in the structure formula Pb[B 0]1/2[B 00]1/2O3, where all B 00-

sites are occupied by BV cations, chemical order of BII and BV cations does exist in B 0-sites and the ordered structure has an hexagonal symmetry.

An order–disorder transition as a function of temperature is evidenced by an abrupt variation of both the heat capacity and a long-range order

parameter. Finally, the evolution of the short-range order parameter versus temperature shows that a local order remains in B 0-sites contrary to the

charge-balanced random-layer model that suggests that B 0-sites are randomly occupied. This local order could be helpful to clarify some

experimental results.
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1. Introduction

Lead based cubic perovskites, PbB 0
xB 00

1KxO3, are attractive

relaxor ferroelectrics because of their high dielectric constant

which is frequency dependent and has a broad maximum as a

function of the temperature [1,2]. It is known that dielectric

properties may be strongly influenced by local order on the

B-sites that is common in these relaxor ferroelectrics [3–5].

Thus, to improve the dielectric properties it is important to

investigate the atomic structure of the long- and short-range

order.

In the Pb BIII
1=2BV

1=2 O3 compounds, like PbSc1/2Ta1/2O3

(PST) [6,7] and PbSc1/2Nb1/2O3 (PSN) [8], a 1:1 ordered

structure is evidenced and corresponds to NaCl-type ðFm �3mÞ

arrangement of cations BIII and BV in the B-sites sublattice by

doubling of the unit cell.

In the Pb BII
1=3BV

2=3 O3 compounds, like PbMg1/3Nb2/3O3

(PMN) [9,10] and PbZn1/3Nb2/3O3 (PZN) [11], diffraction
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studies have revealed ordered domains which present {1/2 1/2

1/2} superlattice reflections. Two models have been proposed

for these ordered structures: the space-charge model and the

charge balanced random-layer model [12–16]. In the space-

charge model, it is postulated that the two different B-sites,

called B 0 and B 00, in the 1:1 ordered structure are occupied

exclusively by the BII and BV cations, respectively, in the form

Pb[BII]1/2[BV]1/2O3. Consequently, these ordered regions carry

a net negative charge. For overall electroneutrality, an equal

and oppositely charged, disordered, BV rich matrix is proposed.

An alternative model has been proposed for this material, the

charge balanced random-layer model (RL). Here, the B 00-sites

are exclusively occupied by BV, whereas the B 0-sites contain a

random distribution of BII and remaining BV. The structural

formula can be represented as Pb½BII
2=3BV

1=3�1=2½B
V�1=2O3 using a

face centred ðFm �3mÞ superstructure. In this case, the ordered

domains are microscopically charge balanced. This model has

then been confirmed by Yan et al. [15] on the basis of high-

resolution Z-contrast imaging of ordered domains in PMN.

The RL model has been used extensively to describe the

ordered structures observed in several lead based complexes

perovskites such as, La-doped PMN or PZN [11], PMN-PMT,

PMT-PST [16], PMT-PZ [17] and PMN-PSN [18] solid

solutions. Dmowski et al. [17] show that annealing of
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Pb(Mg0.3Ta0.6Zr0.1)O3 (PMT-10%PZ) ceramic solid solution

at w1600 K produced significant increases in the volume

fraction of the ordered phase (O95%) and the size of the

chemically ordered regions (w100 nm). On the basis of X-ray

Rietveld refinement, authors show that ordered regions are well

described by the Fm �3m superstructure Pb[Mg0.6Ta0.2Zr0.2]1/2

[Ta]1/2O3 with the B 0-site randomly populated by Mg, Zr and

remaining Ta cations.

However, for the following it is important to note that for

these compounds in which Pb cations were substituted by Ba

cations ðBaBII
1=3BV

2=3O3Þ ordered phases have hexagonal

symmetry where BII and BV cations occupy successive (111)

cubic planes in the sequence BII–BV–BV. For example, the 1:2

ordered structure was observed in BMN [19], BZT [20] and

BMT [21].

Electrostatic energy calculations were first performed by

Bursill et al. [14] on some possible ordered structures in PMN.

The authors showed that the space-charge model (1:1 order)

gives, as expected, a higher energy than the 1:2 ordered

structure along [111] which is usually observed in barium

based perovskites.

Later, by using Monte Carlo calculations and pure Coulomb

interactions to study the disorder on B-sites, Bellaiche et al.

[22] showed that the 1:2 order is the most stable. Moreover, a

partial substitution of BII and BV by BIV (giving

Pb½BII
1=3BV

2=3�1Kx½B
IV�xO3) with a rate of 5 to 25% leads to the

order described by the RL model. In this case, the B 00 sublattice

is almost entirely occupied by BV whereas the B 0 sublattice is

composed of BII, BIV and the remaining BV cations.

In this paper, we shall analyse the possible order of BII and

BV cations in the B 0-sites inside the Pb½BII
2=3BV

1=3�1=2½B
V�1=2O3

structure as a function of the temperature, by rigid-lattice

Monte Carlo sampling. The order–disorder transition is

characterised by using short-range and long-range order

parameters.
2. Computational details

The interactions between ions of the studied system,

Pb½BII
2=3BV

1=3�1=2½B
V�1=2O3, are modelled by the coulombic

terms. Since the real ion charges are unknown in this structure

and their determination needs a full ab initio study, we have

used the nominal charges for this preliminary study. Non-

coulombic terms, both repulsive and attractive ones, have been

ignored. Thus, this model is simple but note that the coulombic
Table 1

Madelung constant and short-range order parameters, a1 and a2

Structure name Symmetry M

ABIVO3 CMI Cub. 4

Space charge model (1:1 order) CMII Cub. 5

Randomly disordered B 0 RL Cub. 5

RLI – 5

Ordered B 0 RLII Orth. 5

RLIII Hex. 5

1:2 order HexM Hex. 5

a We corrected the erroneous value of 50.3326 given in Table 2 of Ref. [14].
contribution represents almost the total energy [23]. As usual,

the Ewald method [24] has been used to calculate the Coulomb

terms. The Madelung energy corresponds to electrostatic

energy normalised by Ke2/a where a is the lattice parameter

of the unit cell. The Madelung energy calculated for the

ABIVO3 structure (CMI), and for the well known 1:2 ordered

structure along [111] (HexM) are equal to 49.5098 and

50.9876, respectively and they are close to those calculated

by Bursill et al. [14] (Table 1).

The chemical disorder on the B 0 sublattice has been

investigated by using the standard Metropolis Monte Carlo

on a rigid lattice. The system consists on a box of 6!6!6 cells

of 5 atoms (1080) corresponding to 108 B 0-sites on which

exchanges are operated between BII and BV atoms. Periodic

boundary conditions have been employed. A typical equili-

brium run corresponds to a total number of exchange attempts

per site of 50,000. Systems of 12!12!12 and 18!18!18

cells have also been used to test the size effects (see

Section 4.4).
3. B 0 sub-lattice ordered structures

We initially calculated the Madelung energy for the

disordered RL structure by averaging the calculated values

for all possible configurations. This means that the B 0 sub-

lattice is randomly disordered. The Madelung energy is equal

to 50.6136 and is higher than that of the space charge structure

(50.5328) showing that the RL structure is more stable than the

space-charge structure.

The RL model suggests that atoms are randomly distributed

in the B 0 sub-lattice. Nevertheless, no investigation has been

carried out on such a disorder. Therefore, we tried to build an

ordered structure by considering the stacking of the (111)

planes and especially the distribution of the BII and BV ions in

the B 0 sub-lattice. Taking into account the stacking sequence of

all the (111) planes (ABC.) and the alternation of the B 0 and

B 00 planes, a periodicity of six planes is imposed and the overall

stacking sequence is A1B2C1A2B1C2. (Fig. 1(a)). B2, A2 and

C2 planes contain BV ions (B 00 sub-lattice) whereas A1, C1 and

B1 contain BII and BV ions (B 0 sub-lattice). For instance, in the

A1 plane, ions are ordered as shown in Fig. 1(b) and then the C1

and B1 planes are obtained by applying a translation of a/3

[114] and 2a/3 [114], respectively (Fig. 1(c)). This ordered

structure is called RLII and its Madelung energy is higher than

that of the disordered RL structure (Table 1).
adelung this work Madelung Ref. [14] a1 a2

9.5098 49.5098 – –

0.5328 50.5326a – –

0.6136 – 0 0

0.9213 – K1/4 1/6

0.9288 – K1/4 0

0.9288 – K1/4 0

0.9876 50.9877 – –
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Fig. 1. Long-range order in the RL structures. (a) Stacking sequence of B 0 and B 00 (111) planes. (b) Order of BII and BV cations in the (111) B 0 plane in the RLII and

RLIII structures. (c) and (d) 3D stacking sequence of B 0 (111) planes in RLII and RLIII, respectively. (e) Order of BII and BV cations in the (111) B 0 plane in the RLI

structure.
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On the other hand, we tried to obtain an ordered structure by

using the Metropolis Monte Carlo simulations. Calculations

were performed at high temperature and then the structure is

followed during a very slow decrease of the temperature. Two

ordered structures were obtained (Fig. 2), RLI for which the

Madelung energy lies between that of the disordered RL and

RLII (Table 1), and RLIII which has exactly the same Madelung

energy as RLII. The RLIII structure is similar with that of RLII

and only differs by the stacking of the A1, C1 and B1 planes

(Fig. 1(d)). The symmetry of the RLIII structure is hexagonal

whereas the symmetry of the RLII structure is orthorhombic.

The structure of RLI is based on the stacking of B 0 (111) planes

in which BII and BV cations are distributed as shown in Fig. 1(e).
4. Order–disorder properties

The RLIII ordered structure has been chosen as the

reference configuration at low temperature. We have success-

fully checked that the disordered equilibrium configurations
RL I RL II RL III

Fig. 2. Perspective view, along a !100O direction, of the B 0 and B 00 sub-

lattices of the ordered RL structures given in Table 1. Full and open circles

correspond to BII and BV cations, respectively. The sites of oxygen ions and

cations A are not drawn.
reached by the MC simulations (described above) are

independent on the initial configuration.
4.1. Order–disorder transition

MC simulations have been performed at different tempera-

tures. For low temperatures, exchanges are rare events. The

energy is constant and the structure remains ordered. The

associated heat capacity, CV, computed as the energy

fluctuations is thus equal to zero. Above a determined

temperature that we define as a critical one, the exchanges

take place frequently, the energy increases and CV exhibits an

abrupt variation corresponding to an order–disorder transition.

The values of the temperature are meaningless since the

interactions model is purely coulombic (see Section 2).

Nevertheless, the order–disorder critical temperature obtained,

TC, corresponds to a characteristic energy close to 0.29 e2/a. To

obtain an order of magnitude of the critical temperature value,

we have to include the screening effect via the dielectric

constant, 3. Using aZ0.405 nm and 3 w7–12, TC ranges from

1000 to 1700 K. Analysis of the structure along the equilibrium

MC trajectory at TC shows that the system periodically

alternating between the ordered state RLIII and a disordered

one. Moreover the RLIII hexagonal-axes changes and is

oriented successively according to the four equivalent !111O
directions (Fig. 3). On average, the probability so that the

structure is ordered at this temperature is about 56%.

Fig. 4 shows that the Madelung constant decreases (i.e. an

increase of the potential energy) as the temperature increases.

The associated heat capacity (Fig. 4) presents a pronounced

peak: CV is divided by w6 while T/TC ranges from 1 to w1.3.

This is the signature of a phase transition that in this case
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corresponds to an order–disorder transition in the B 0 sub-

lattice. For higher temperatures, CV decreases slowly and

linearly with T/TC. It is important to note that, although the

melting point Tf of these compounds is about 1700 K [25] (Tf/

TC!2), calculations were carried out at temperatures higher

than the experimental Tf in order to follow the evolution

towards the randomly disordered state.
4.2. Order–disorder parameters

In order to characterise the disorder in the B 0 sub-lattice, we

chose to use short-range order parameters (SRO) as those

defined by Cowley for metallic alloys [26]. The first (iZ1) and
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Fig. 4. Heat capacity at constant volume (circles) and Madelung energy

(squares) plotted as a function of the temperature. The temperature is

normalised to the critical temperature, TC. For T!TC, markers correspond to

the ordered state at TZ0 K. Full, open markers and crosses correspond to 6!

6!6, 12!12!12 and 18!18!18 cells, respectively. The error bars indicate

the difficulty to calculate the heat capacity at TC. kB is the Boltzmann’ constant.
second (iZ2) neighbours SRO parameters, a1 and a2,

respectively, are given by:

ai Z 1K
PiðB

IIÞ

2=3
(1)

where Pi(B
II) is the probability to find a BII atom as ith

neighbour around a BV atom, knowing that the atomic fraction

of BII atoms in the B 0 sub-lattice is equal to 2/3. The first and

second neighbour distances are equal to
ffiffiffi
2

p
a and 2a,

respectively. For randomly disordered configurations, Pi(B
II)

tends to 2/3 and then ai tends to zero.

For ordered configurations (T!TC) of the ‘random-layer’

structure, Table 1 shows that RLII and RLIII have the same

values for a1 and a2. These values are the low-temperature

ones plotted in Fig. 5. The RLI configuration differs from the

previous ones by a different value of a2 and that corresponds to

a slightly higher Madelung energy. For TOTC, a local order

remains and decreases slowly as the temperature increases. As

the temperature increases the system tends towards the

randomly disordered configuration. The second neighbour

order vanishes whereas the first neighbour one does not.
4.3. Electric dipole moment

Considering that the exchange operate on two ions having

different charges (C2 and C5), we can also characterise the

thermal evolution of the system by the magnitude of the electric

dipole moment computed for the volume of the 6!6!6 box.

Fig. 5 shows this evolution. In the ordered state, the moment is,

as expected, equal to zero. At TC, the moment increases

abruptly to reach a value near 0.11 e a per unit cell (ABO3)

which corresponds to a polarisation of about 0.1 C mK2. This

quantity, due to the chemical disorder, has the same order of

magnitude as the polarisation associated to the atomic shifts

occurring in the ferroelectric phases [27]. We emphasise that
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the latter contributes to the switchable polarisation of a given

sample while the former does not. Its variation at higher

temperatures is a very slight increase with increasing

temperature. Therefore, this quantity cannot be used to

characterise the disorder evolution as can be done using a1

and a2. It could be considered as a long-range order parameter.

On the other hand, the lower value of the moment (0.05 e a per

unit cell) around TC is due to the fact that the system

‘periodically’ alternates between the ordered state RLIII and a

disordered one (Fig. 3).
4.4. Size effect

For such a study of the structural order, we must check that

the results obtained are not influenced by the limited size of the

simulation box. This is the reason why calculations have been

carried out on a larger system, namely a 12!12!12 box.

Since these calculations require too much CPU time, and

especially close to TC, only some temperatures have been

checked. The high-temperature results are identical for both

sizes, as shown in Figs. 4 and 5 (see points at T/TCO4) and

slight discrepancies are observed for lower temperatures. In

fact, the discrepancy increases as the temperature is closer to

TC. Concerning the Madelung energy, CV and a1 (Figs. 4 and

5), the agreement between the two box sizes is good. The

results obtained with a 18!18!18 system leads to the same

conclusions.

Nevertheless, a more important discrepancy is observed for

a2 (Fig. 5). In this case, the size effect can be explained by

comparing the second neighbour distance (2 a) to the half sizes

of the three boxes: 3 a, 6 a and 9 a. The sampling is less

efficient in the small box because we cannot ‘find’ two atoms

with independent neighbours included in a sphere of radius 2a.

In other words, the second neighbour distributions are
correlated. In addition, the closeness of the a2 values

associated with the 12!12!12 and 18!18!18 boxes

corroborates this explanation.

The electric dipole moment in the 12!12!12 system has

been computed over sub-systems of the same size as the 6!
6!6 system (see appendix for details). Therefore, the eight

obtained values are averaged and reported in Fig. 5. We note

that the values of the 12!12!12 and 18!18!18 systems

undergo the same behaviour as the 6!6!6 one.

In conclusion, the 6!6!6 system provides satisfying

results and no redhibitory size effect has been observed.

5. Discussion and conclusions

These results show that the B 0 sub-lattice should not be a

pure random mixture of ðBII
2=3BV

1=3Þ. In fact, the local order

parameters at temperatures approaching Tf (w2 TC) are far

from being null (Fig. 5) as that is awaited if the B 0-sites would

be randomly occupied. At these temperatures, a local order

remains and is characterised by a probability equal to 0.8

(instead of 0.67) to find a BII atom around a BV atom at the

distance
ffiffiffi
2

p
a. On the other hand, although the disorder is weak,

the electric polarisation due to the chemical disorder, presents

rather important values. The calculated value of the electric

dipole moment for a 6!6!6 box, corresponds to a

polarisation of about 0.1 C mK2. However, this disorder-

induced local anisotropy is not consistent any more with the

cubic Fm �3m symmetry and suggests that relaxation is needed

in the system; ions should be shifted from their centred

positions due to the disorder-induced local electric field. Such

ion displacements will thus contribute to a local polarisation of

the system. Indeed, a polarisation fluctuation ranging from 0.05

to 0.25 C mK2 was measured in the temperature range 600–

300 K in which the structure is assumed to be cubic with an

average polarisation equal to zero [27]. This disorder-induced

local anisotropy effect was used recently to explain the

existence of the first-order Raman scattering [28] and the

NMR line shapes [29] in PMN with average cubic symmetry.

These results about the local cations rearrangement in the

Pb BII
1=3BV

2=3O3 compounds should make it possible to look

further into modelling, by taking into account the non-

coulombic terms or by a full ab initio study in order to

determine the real ferroelectric structure. Moreover, it is

important to confirm in the future, the existence of the ordered

structures RLI, II and III which will be probably used as basic

structures for the first stage of calculations.
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Appendix

We try to define an electric dipole moment ðp for a non-

neutral charge distribution ððri; qiÞ. From the total positive and

negative charges Q(C) and Q(K), we define 2 DQ as the total

charge Q(C)CQ(K) of the distribution and 2 Q as the difference
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Q(C)KQ(K). The total charge moment can be expressed as

following
X

i

qiðri Z QðCÞðr ðCÞ CQðKÞðr ðKÞ

X

i

qiðri Z Q½ðr ðCÞKðr ðKÞ�CDQ½ðr ðCÞ C ðr ðKÞ�

where ðr ðCÞ and ðr ðKÞare the charge-weighted averaged positions

for positive and negative charges, respectively. We note that

the quantity

ðp1 Z DQ½ðr ðCÞ C ðr ðKÞ�

corresponds to a monopolar charge. On the other hand the

quantity

ðp Z Q½ðr ðCÞKðr ðKÞ�

corresponds to an electric dipole moment. One can note that in

the case of a neutral charge distribution, ðp1 vanishes and the

total charge moment corresponds to the electric dipole

moment ðp.

In our case of both the 12!12!12 and 18!18!18

systems, ðp has been computed over non-neutral sub-systems, of

the same size as the 6!6!6 system. For disordered structures

the average value of DQ is about e.
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