

Transitions de phases et propriétés piézoélectriques de monocristaux de $Pb(Zn_{1/3}Nb_{2/3})_{(1-x)}Ti_xO_3$

Hichem DAMMAK

Laboratoire Structures, Propriétés et Modélisation des Solides

Plan

Transitions de **phases** dans les métaux & forte excitation électronique

Phases ferroélectriques & piézoélectricité de monocristaux de $Pb(Zn_{1/3}Nb_{2/3})_{(1-x)}Ti_xO_3$

Transitions de phases dans les métaux & forte excitation électronique

Collaboration

A. Dunlop, M. Angiolini (Post doc.)

LSI, Polytechnique

Irradiations aux ions Fullerènes : Tandem, Orsay

Forte excitation électronique

Propriétés du Titane

Endommagement du Ti Ar, ... U (~1GeV)

Traces géantes

Changement de phase dans une trace C_{60} , 30 MeV

90 K

300 K

90 K

Résultat de la conversion d'énergie

Phases ferroélectriques & piézoélectricité de monocristaux de $Pb(Zn_{1/3}Nb_{2/3})_{(1-x)}Ti_xO_3$

THALES

Contexte & Moyens

- Thèses: A. Idoumou Ould (1997), A. Lebon (2001), A. Renault (2002)
- Collaboration: P. Gaucher, M. Pham Thi Thales (TRT Orsay, TUS Sofia)
 - Sonars, Sondes échographiques
- Synthèse: ECP (SPMS), Thales (TRT)
- Structure: Diffraction RX (SPMS), Raman (Amiens)
- Diélectrique-Piézoélectrique: SPMS, TRT

• Simple: Ba²⁺Ti⁴⁺O₃, PbTiO₃ (PT),

Complexe désordonnée:

 $Pb[Mg^{2+}_{1/3}Nb^{5+}_{2/3}]O_{3} (PMN),$ $Pb[Zn_{1/3}Nb_{2/3}]O_{3} (PZN),$ $Pb[Sc^{3+}_{1/2}Nb^{5+}_{1/2}]O_{3} (PSN)$

• Solution: PMN-x%PT, PZN-x%PT

Pérovskites complexes et solutions solides

Les composés PZN-x%PT

C 400 C T(K) 200 R M Kuwata et al. (81) 0 5 10 15 20 X(% PbTiO₃)

Hystérésis thermique

$BaTiO_3: O \leftrightarrow T$
< 10K

Cinétiques Lentes

Polarisation

Paramètres importants !
 dT/dt, E, dE/dt

Changement de phases

Modes de déformation piézoélectrique

Piézoélectricité du poly-domaine

État poly-domaines [001]		PZN9%PT	PZN4.5PT	BaTiO ₃
		4 M	4 R	40
Longitudinal	s ₃₃ (pN/m ²)	184	112	~ 15
[001]	d ₃₃ (pm/V)	2730	2048	~ 400
	k ₃₃	93%	89%	~ 67%
Transverse	d ₃₁	1840	827	
[100]	k ₃₁	84%	38%	
[110]	d ₃₁	1110	1114	
	k ₃₁	85%	86%	

Changement de symétrie

Faible champ électrique ~1 kV/cm

PZN $R \rightarrow M_A$ $c-a: 0,000 \rightarrow 0,002 \text{\AA}$ $\alpha: 89,93 \rightarrow 89,85^{\circ}$ 4,5% $R \rightarrow M_A$

Ohwada 2001

9% Distorsion monoclinique $c-a: 0,001 \rightarrow 0,004 \text{\AA}$ $\beta: 90,19 \rightarrow 90,17^{\circ}$

Fort champ électrique >~5 kV/cm

8%

 $R \rightarrow M_A \rightarrow M_C \rightarrow T \rightarrow O$

Ohwada 2001 Noheda 2002

Piézoélectricité du mono-domaine

État Mono-	domaine	PZN9%PT	KNbO ₃
[10-1]	1 M	10
Cisaillement	s ₅₅ (pN/m ²)	190	40
[001],[100]	d ₁₅ (pm/V)	3200	214
	d_{15}/d_{33}	13	7
	k ₁₅	80%	90%

Approximation Phase O

Origine de la piézoélectricité géante Microscopique

- Aptitude à changer de symétrie
- Énergies des phases très proches
- Phénomènes pré-transitionnels

Morphotropique

Proximité d'une transition de phase

Origine de la piézoélectricité géante Macroscopique

Forte compliance élastique $s_{\alpha\beta}$ Faible distorsion ferroélectrique

- Forte densité de domaines:
- Forte anisotropie
 ↓
- Contraintes dynamiques induites

 $d_{i\alpha}^{eff}$ $= f(d_{i\alpha}, s_{\alpha\beta})$

Perspectives

• Extension à d'autres composés :

- PMN-PT, PSN-PT (R. Haumont, B. Dkhil, J.M. Kiat)

• Étude de transducteurs large bande utilisant les monocristaux:

(C. Augier, P. Gaucher, M. Pham Thi)

Perspectives

• Rôle du désordre microscopique: (+2; +5) simulation numérique

Phase cubique en moyenne

Moment dipolaire électrique local

Monte Carlo

M. Hayoun, LSI, Polytechnique

Perspectives

Nanopoudres – Nanomatériaux « Relaxeurs »

Cristal \rightarrow micro-grain \rightarrow nano-grain

microstructure des domaines

Nanodomaines polaires ~50 nm

Lyophilisation

(J. Carreaud, C. Bogicevic, B. Dkhil, J.M. Kiat)

nanopoudre \rightarrow Céramique Homogénéité

Grains de BaTiO₃

THALES

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Laboratoire Structures, Propriétés et Modélisation des Solides

